Limits...
Touchscreen-paradigm for mice reveals cross-species evidence for an antagonistic relationship of cognitive flexibility and stability.

Richter SH, Vogel AS, Ueltzhöffer K, Muzzillo C, Vogt MA, Lankisch K, Armbruster-Genç DJ, Riva MA, Fiebach CJ, Gass P, Vollmayr B - Front Behav Neurosci (2014)

Bottom Line: Recently, a novel human paradigm has found individual differences of cognitive flexibility and stability to be related to common prefrontal networks.Importantly, subjects switching more often spontaneously were found to be more distractible by task irrelevant cues, but also more flexible in situations, where switching was required.These results support a dichotomy of cognitive flexibility and stability as predicted by the Dual State Theory.

View Article: PubMed Central - PubMed

Affiliation: Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University Mannheim, Germany ; Bernstein Center for Computational Neuroscience Heidelberg/Mannheim, Germany.

ABSTRACT
The abilities to either flexibly adjust behavior according to changing demands (cognitive flexibility) or to maintain it in the face of potential distractors (cognitive stability) are critical for adaptive behavior in many situations. Recently, a novel human paradigm has found individual differences of cognitive flexibility and stability to be related to common prefrontal networks. The aims of the present study were, first, to translate this paradigm from humans to mice and, second, to test conceptual predictions of a computational model of prefrontal working memory mechanisms, the Dual State Theory, which assumes an antagonistic relation between cognitive flexibility and stability. Mice were trained in a touchscreen-paradigm to discriminate visual cues. The task involved "ongoing" and cued "switch" trials. In addition distractor cues were interspersed to test the ability to resist distraction, and an ambiguous condition assessed the spontaneous switching between two possible responses without explicit cues. While response times did not differ substantially between conditions, error rates (ER) increased from the "ongoing" baseline condition to the most complex condition, where subjects were required to switch between two responses in the presence of a distracting cue. Importantly, subjects switching more often spontaneously were found to be more distractible by task irrelevant cues, but also more flexible in situations, where switching was required. These results support a dichotomy of cognitive flexibility and stability as predicted by the Dual State Theory. Furthermore, they replicate critical aspects of the human paradigm, which indicates the translational potential of the testing procedure and supports the use of touchscreen procedures in preclinical animal research.

No MeSH data available.


Related in: MedlinePlus

Number of correction trials during the cue-position task with correction of three individual mice. The total number of correction trials turned out to be a good measure for an individual's learning progress in this phase. Different types of learning curves were observed: While some subjects were characterized by a rapid decrease of correction trials, reflecting a steep learning progress (A), others were characterized by a more gradual learning improvement over time (B,C).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4017158&req=5

Figure 5: Number of correction trials during the cue-position task with correction of three individual mice. The total number of correction trials turned out to be a good measure for an individual's learning progress in this phase. Different types of learning curves were observed: While some subjects were characterized by a rapid decrease of correction trials, reflecting a steep learning progress (A), others were characterized by a more gradual learning improvement over time (B,C).

Mentions: During the initial phase of the task (habituation) animals were habituated to the touchscreen-box and required to learn how to initiate trials and to touch on the screen for getting a reward. On average, mice needed 15 days to go through these basic steps with only two animals that needed more than 20 days to reach the criterion (Table 1). The subsequent training phase consisted of five different sub-phases that were completed after 63 ± 4 days. Notably, the overall training duration ranged from 29 to 90 days, reflecting considerable inter-individual variability (Table 1). Differences in training duration, however, were mainly due to performance differences in the cue-position task with correction. While one mouse reached the criterion already after 15 days, another one required 79 days to go through this critical training phase (Table 1). In this context, the number of correction trials per day turned out to be a good measure for the assessment of an individual's learning progress throughout this phase (Figure 5). While some individuals were characterized by a rapid decrease of correction trials (Figure 5A), the performance of other individuals followed a more gradual improvement over several days (Figure 5C). Thus, although some animals required more than 2 months learning the cue-position task with correction, their performance was characterized by a continuously decreasing number of correction trials.


Touchscreen-paradigm for mice reveals cross-species evidence for an antagonistic relationship of cognitive flexibility and stability.

Richter SH, Vogel AS, Ueltzhöffer K, Muzzillo C, Vogt MA, Lankisch K, Armbruster-Genç DJ, Riva MA, Fiebach CJ, Gass P, Vollmayr B - Front Behav Neurosci (2014)

Number of correction trials during the cue-position task with correction of three individual mice. The total number of correction trials turned out to be a good measure for an individual's learning progress in this phase. Different types of learning curves were observed: While some subjects were characterized by a rapid decrease of correction trials, reflecting a steep learning progress (A), others were characterized by a more gradual learning improvement over time (B,C).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4017158&req=5

Figure 5: Number of correction trials during the cue-position task with correction of three individual mice. The total number of correction trials turned out to be a good measure for an individual's learning progress in this phase. Different types of learning curves were observed: While some subjects were characterized by a rapid decrease of correction trials, reflecting a steep learning progress (A), others were characterized by a more gradual learning improvement over time (B,C).
Mentions: During the initial phase of the task (habituation) animals were habituated to the touchscreen-box and required to learn how to initiate trials and to touch on the screen for getting a reward. On average, mice needed 15 days to go through these basic steps with only two animals that needed more than 20 days to reach the criterion (Table 1). The subsequent training phase consisted of five different sub-phases that were completed after 63 ± 4 days. Notably, the overall training duration ranged from 29 to 90 days, reflecting considerable inter-individual variability (Table 1). Differences in training duration, however, were mainly due to performance differences in the cue-position task with correction. While one mouse reached the criterion already after 15 days, another one required 79 days to go through this critical training phase (Table 1). In this context, the number of correction trials per day turned out to be a good measure for the assessment of an individual's learning progress throughout this phase (Figure 5). While some individuals were characterized by a rapid decrease of correction trials (Figure 5A), the performance of other individuals followed a more gradual improvement over several days (Figure 5C). Thus, although some animals required more than 2 months learning the cue-position task with correction, their performance was characterized by a continuously decreasing number of correction trials.

Bottom Line: Recently, a novel human paradigm has found individual differences of cognitive flexibility and stability to be related to common prefrontal networks.Importantly, subjects switching more often spontaneously were found to be more distractible by task irrelevant cues, but also more flexible in situations, where switching was required.These results support a dichotomy of cognitive flexibility and stability as predicted by the Dual State Theory.

View Article: PubMed Central - PubMed

Affiliation: Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University Mannheim, Germany ; Bernstein Center for Computational Neuroscience Heidelberg/Mannheim, Germany.

ABSTRACT
The abilities to either flexibly adjust behavior according to changing demands (cognitive flexibility) or to maintain it in the face of potential distractors (cognitive stability) are critical for adaptive behavior in many situations. Recently, a novel human paradigm has found individual differences of cognitive flexibility and stability to be related to common prefrontal networks. The aims of the present study were, first, to translate this paradigm from humans to mice and, second, to test conceptual predictions of a computational model of prefrontal working memory mechanisms, the Dual State Theory, which assumes an antagonistic relation between cognitive flexibility and stability. Mice were trained in a touchscreen-paradigm to discriminate visual cues. The task involved "ongoing" and cued "switch" trials. In addition distractor cues were interspersed to test the ability to resist distraction, and an ambiguous condition assessed the spontaneous switching between two possible responses without explicit cues. While response times did not differ substantially between conditions, error rates (ER) increased from the "ongoing" baseline condition to the most complex condition, where subjects were required to switch between two responses in the presence of a distracting cue. Importantly, subjects switching more often spontaneously were found to be more distractible by task irrelevant cues, but also more flexible in situations, where switching was required. These results support a dichotomy of cognitive flexibility and stability as predicted by the Dual State Theory. Furthermore, they replicate critical aspects of the human paradigm, which indicates the translational potential of the testing procedure and supports the use of touchscreen procedures in preclinical animal research.

No MeSH data available.


Related in: MedlinePlus