Limits...
Touchscreen-paradigm for mice reveals cross-species evidence for an antagonistic relationship of cognitive flexibility and stability.

Richter SH, Vogel AS, Ueltzhöffer K, Muzzillo C, Vogt MA, Lankisch K, Armbruster-Genç DJ, Riva MA, Fiebach CJ, Gass P, Vollmayr B - Front Behav Neurosci (2014)

Bottom Line: Recently, a novel human paradigm has found individual differences of cognitive flexibility and stability to be related to common prefrontal networks.Importantly, subjects switching more often spontaneously were found to be more distractible by task irrelevant cues, but also more flexible in situations, where switching was required.These results support a dichotomy of cognitive flexibility and stability as predicted by the Dual State Theory.

View Article: PubMed Central - PubMed

Affiliation: Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University Mannheim, Germany ; Bernstein Center for Computational Neuroscience Heidelberg/Mannheim, Germany.

ABSTRACT
The abilities to either flexibly adjust behavior according to changing demands (cognitive flexibility) or to maintain it in the face of potential distractors (cognitive stability) are critical for adaptive behavior in many situations. Recently, a novel human paradigm has found individual differences of cognitive flexibility and stability to be related to common prefrontal networks. The aims of the present study were, first, to translate this paradigm from humans to mice and, second, to test conceptual predictions of a computational model of prefrontal working memory mechanisms, the Dual State Theory, which assumes an antagonistic relation between cognitive flexibility and stability. Mice were trained in a touchscreen-paradigm to discriminate visual cues. The task involved "ongoing" and cued "switch" trials. In addition distractor cues were interspersed to test the ability to resist distraction, and an ambiguous condition assessed the spontaneous switching between two possible responses without explicit cues. While response times did not differ substantially between conditions, error rates (ER) increased from the "ongoing" baseline condition to the most complex condition, where subjects were required to switch between two responses in the presence of a distracting cue. Importantly, subjects switching more often spontaneously were found to be more distractible by task irrelevant cues, but also more flexible in situations, where switching was required. These results support a dichotomy of cognitive flexibility and stability as predicted by the Dual State Theory. Furthermore, they replicate critical aspects of the human paradigm, which indicates the translational potential of the testing procedure and supports the use of touchscreen procedures in preclinical animal research.

No MeSH data available.


Related in: MedlinePlus

Experimental time schedule. The testing procedure was divided into three main phases: habituation, training and testing phase. During the habituation and training phases, mice were acquainted with the basic box functions and learned to respond to the discriminative task before being tested in the STABFLEX test.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4017158&req=5

Figure 3: Experimental time schedule. The testing procedure was divided into three main phases: habituation, training and testing phase. During the habituation and training phases, mice were acquainted with the basic box functions and learned to respond to the discriminative task before being tested in the STABFLEX test.

Mentions: The mice were housed under stable conditions for 4 weeks before the onset of testing. The testing procedure was divided into three main phases: habituation, training and testing phase (Figure 3). The daily testing order followed a fixed schedule to guarantee a consistent level of motivation due to feeding times. At the beginning of each test session, mice were transported to the test room in their home cages and allowed to acclimatize to the room before testing commenced. The testing was done during the dark phase of the cycle, 2 h after the light change. Food was supplied individually following the testing procedure. Inner chambers were cleaned after the testing of each animal with water. One week ahead the first introduction into the boxes, the animals received sweet condensed milk (SCM) in their home cages in order to avoid later refusal of the reward provided in the touchscreen boxes.


Touchscreen-paradigm for mice reveals cross-species evidence for an antagonistic relationship of cognitive flexibility and stability.

Richter SH, Vogel AS, Ueltzhöffer K, Muzzillo C, Vogt MA, Lankisch K, Armbruster-Genç DJ, Riva MA, Fiebach CJ, Gass P, Vollmayr B - Front Behav Neurosci (2014)

Experimental time schedule. The testing procedure was divided into three main phases: habituation, training and testing phase. During the habituation and training phases, mice were acquainted with the basic box functions and learned to respond to the discriminative task before being tested in the STABFLEX test.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4017158&req=5

Figure 3: Experimental time schedule. The testing procedure was divided into three main phases: habituation, training and testing phase. During the habituation and training phases, mice were acquainted with the basic box functions and learned to respond to the discriminative task before being tested in the STABFLEX test.
Mentions: The mice were housed under stable conditions for 4 weeks before the onset of testing. The testing procedure was divided into three main phases: habituation, training and testing phase (Figure 3). The daily testing order followed a fixed schedule to guarantee a consistent level of motivation due to feeding times. At the beginning of each test session, mice were transported to the test room in their home cages and allowed to acclimatize to the room before testing commenced. The testing was done during the dark phase of the cycle, 2 h after the light change. Food was supplied individually following the testing procedure. Inner chambers were cleaned after the testing of each animal with water. One week ahead the first introduction into the boxes, the animals received sweet condensed milk (SCM) in their home cages in order to avoid later refusal of the reward provided in the touchscreen boxes.

Bottom Line: Recently, a novel human paradigm has found individual differences of cognitive flexibility and stability to be related to common prefrontal networks.Importantly, subjects switching more often spontaneously were found to be more distractible by task irrelevant cues, but also more flexible in situations, where switching was required.These results support a dichotomy of cognitive flexibility and stability as predicted by the Dual State Theory.

View Article: PubMed Central - PubMed

Affiliation: Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University Mannheim, Germany ; Bernstein Center for Computational Neuroscience Heidelberg/Mannheim, Germany.

ABSTRACT
The abilities to either flexibly adjust behavior according to changing demands (cognitive flexibility) or to maintain it in the face of potential distractors (cognitive stability) are critical for adaptive behavior in many situations. Recently, a novel human paradigm has found individual differences of cognitive flexibility and stability to be related to common prefrontal networks. The aims of the present study were, first, to translate this paradigm from humans to mice and, second, to test conceptual predictions of a computational model of prefrontal working memory mechanisms, the Dual State Theory, which assumes an antagonistic relation between cognitive flexibility and stability. Mice were trained in a touchscreen-paradigm to discriminate visual cues. The task involved "ongoing" and cued "switch" trials. In addition distractor cues were interspersed to test the ability to resist distraction, and an ambiguous condition assessed the spontaneous switching between two possible responses without explicit cues. While response times did not differ substantially between conditions, error rates (ER) increased from the "ongoing" baseline condition to the most complex condition, where subjects were required to switch between two responses in the presence of a distracting cue. Importantly, subjects switching more often spontaneously were found to be more distractible by task irrelevant cues, but also more flexible in situations, where switching was required. These results support a dichotomy of cognitive flexibility and stability as predicted by the Dual State Theory. Furthermore, they replicate critical aspects of the human paradigm, which indicates the translational potential of the testing procedure and supports the use of touchscreen procedures in preclinical animal research.

No MeSH data available.


Related in: MedlinePlus