Limits...
Polyamines and abiotic stress in plants: a complex relationship.

Minocha R, Majumdar R, Minocha SC - Front Plant Sci (2014)

Bottom Line: The physiological relationship between abiotic stress in plants and polyamines was reported more than 40 years ago.In fact, somewhat enigmatic but strong positive relationship between abiotic stress and foliar polyamines has been proposed as a potential biochemical marker of persistent environmental stress in forest trees in which phenotypic symptoms of stress are not yet visible.This review provides a comprehensive and critical evaluation of the published literature on interactions between abiotic stress and polyamines in plants, and examines the experimental strategies used to understand the functional significance of this relationship with the aim of improving plant productivity, especially under conditions of abiotic stress.

View Article: PubMed Central - PubMed

Affiliation: US Forest Service, Northern Research Station Durham, NH, USA.

ABSTRACT
The physiological relationship between abiotic stress in plants and polyamines was reported more than 40 years ago. Ever since there has been a debate as to whether increased polyamines protect plants against abiotic stress (e.g., due to their ability to deal with oxidative radicals) or cause damage to them (perhaps due to hydrogen peroxide produced by their catabolism). The observation that cellular polyamines are typically elevated in plants under both short-term as well as long-term abiotic stress conditions is consistent with the possibility of their dual effects, i.e., being protectors from as well as perpetrators of stress damage to the cells. The observed increase in tolerance of plants to abiotic stress when their cellular contents are elevated by either exogenous treatment with polyamines or through genetic engineering with genes encoding polyamine biosynthetic enzymes is indicative of a protective role for them. However, through their catabolic production of hydrogen peroxide and acrolein, both strong oxidizers, they can potentially be the cause of cellular harm during stress. In fact, somewhat enigmatic but strong positive relationship between abiotic stress and foliar polyamines has been proposed as a potential biochemical marker of persistent environmental stress in forest trees in which phenotypic symptoms of stress are not yet visible. Such markers may help forewarn forest managers to undertake amelioration strategies before the appearance of visual symptoms of stress and damage at which stage it is often too late for implementing strategies for stress remediation and reversal of damage. This review provides a comprehensive and critical evaluation of the published literature on interactions between abiotic stress and polyamines in plants, and examines the experimental strategies used to understand the functional significance of this relationship with the aim of improving plant productivity, especially under conditions of abiotic stress.

No MeSH data available.


Related in: MedlinePlus

Diagrammatic representation of the complexity of interactions between polyamines and abiotic stress response in plants. The Figure also shows a central role of ornithine in the metabolic interaction of polyamines with glutamate, proline, arginine and γ-aminobutyric acid. While multiple arrows indicate multiple steps, the dotted arrows indicate increased flux/positive regulatory role. Thick upright arrows indicate increase in concentrations or effect.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4017135&req=5

Figure 1: Diagrammatic representation of the complexity of interactions between polyamines and abiotic stress response in plants. The Figure also shows a central role of ornithine in the metabolic interaction of polyamines with glutamate, proline, arginine and γ-aminobutyric acid. While multiple arrows indicate multiple steps, the dotted arrows indicate increased flux/positive regulatory role. Thick upright arrows indicate increase in concentrations or effect.

Mentions: Abiotic stress exposure in plants can be divided into three arbitrary stages: stress perception, stress response and stress outcome (Figure 1). Depending on the nature of stress, its perception can be localized to a specific group of cells, tissues and organs or it could be widespread. Additionally, stress could arise suddenly or slowly. For example, exposure of roots to a heavy metal in fertilizer or saline water or to flooding is likely to be different from that if the plant started its life in the presence of these stressors. On the other hand, drought due to lack of programmed irrigation and/or excessive transpiration, or a gradual increase in ozone concentration in the air, are examples of slow exposure to stress. In the latter instances, the precise organ or tissue perceiving stress is difficult to determine. Therefore, the perception of sudden vs. gradual exposure to stressors can be physiologically quite different and must involve different sensing mechanisms. Likewise, whilst the initial exposure to stress may be limited to a certain plant organ (e.g., roots in the case of salt or heavy metal), yet the response is often systemic. In cases when the tolerance mechanism includes stress avoidance (e.g., exclusion of toxic or harmful chemicals including heavy metals) by interfering with uptake mechanisms, the response is generally limited to the same tissues and/or organs that perceive the stress signal. Yet again, even when the responding tissues are the same as the perceiving tissues, e.g., secretion of organic acids in the presence of Al (Kochian et al., 2004; Yu et al., 2012), the metabolism of the entire organ/plant may be affected with broad tissue-specificity. Hence, explanation of the effects of stress on plant metabolic changes like those in PAs must take into account the experimental conditions being used.


Polyamines and abiotic stress in plants: a complex relationship.

Minocha R, Majumdar R, Minocha SC - Front Plant Sci (2014)

Diagrammatic representation of the complexity of interactions between polyamines and abiotic stress response in plants. The Figure also shows a central role of ornithine in the metabolic interaction of polyamines with glutamate, proline, arginine and γ-aminobutyric acid. While multiple arrows indicate multiple steps, the dotted arrows indicate increased flux/positive regulatory role. Thick upright arrows indicate increase in concentrations or effect.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4017135&req=5

Figure 1: Diagrammatic representation of the complexity of interactions between polyamines and abiotic stress response in plants. The Figure also shows a central role of ornithine in the metabolic interaction of polyamines with glutamate, proline, arginine and γ-aminobutyric acid. While multiple arrows indicate multiple steps, the dotted arrows indicate increased flux/positive regulatory role. Thick upright arrows indicate increase in concentrations or effect.
Mentions: Abiotic stress exposure in plants can be divided into three arbitrary stages: stress perception, stress response and stress outcome (Figure 1). Depending on the nature of stress, its perception can be localized to a specific group of cells, tissues and organs or it could be widespread. Additionally, stress could arise suddenly or slowly. For example, exposure of roots to a heavy metal in fertilizer or saline water or to flooding is likely to be different from that if the plant started its life in the presence of these stressors. On the other hand, drought due to lack of programmed irrigation and/or excessive transpiration, or a gradual increase in ozone concentration in the air, are examples of slow exposure to stress. In the latter instances, the precise organ or tissue perceiving stress is difficult to determine. Therefore, the perception of sudden vs. gradual exposure to stressors can be physiologically quite different and must involve different sensing mechanisms. Likewise, whilst the initial exposure to stress may be limited to a certain plant organ (e.g., roots in the case of salt or heavy metal), yet the response is often systemic. In cases when the tolerance mechanism includes stress avoidance (e.g., exclusion of toxic or harmful chemicals including heavy metals) by interfering with uptake mechanisms, the response is generally limited to the same tissues and/or organs that perceive the stress signal. Yet again, even when the responding tissues are the same as the perceiving tissues, e.g., secretion of organic acids in the presence of Al (Kochian et al., 2004; Yu et al., 2012), the metabolism of the entire organ/plant may be affected with broad tissue-specificity. Hence, explanation of the effects of stress on plant metabolic changes like those in PAs must take into account the experimental conditions being used.

Bottom Line: The physiological relationship between abiotic stress in plants and polyamines was reported more than 40 years ago.In fact, somewhat enigmatic but strong positive relationship between abiotic stress and foliar polyamines has been proposed as a potential biochemical marker of persistent environmental stress in forest trees in which phenotypic symptoms of stress are not yet visible.This review provides a comprehensive and critical evaluation of the published literature on interactions between abiotic stress and polyamines in plants, and examines the experimental strategies used to understand the functional significance of this relationship with the aim of improving plant productivity, especially under conditions of abiotic stress.

View Article: PubMed Central - PubMed

Affiliation: US Forest Service, Northern Research Station Durham, NH, USA.

ABSTRACT
The physiological relationship between abiotic stress in plants and polyamines was reported more than 40 years ago. Ever since there has been a debate as to whether increased polyamines protect plants against abiotic stress (e.g., due to their ability to deal with oxidative radicals) or cause damage to them (perhaps due to hydrogen peroxide produced by their catabolism). The observation that cellular polyamines are typically elevated in plants under both short-term as well as long-term abiotic stress conditions is consistent with the possibility of their dual effects, i.e., being protectors from as well as perpetrators of stress damage to the cells. The observed increase in tolerance of plants to abiotic stress when their cellular contents are elevated by either exogenous treatment with polyamines or through genetic engineering with genes encoding polyamine biosynthetic enzymes is indicative of a protective role for them. However, through their catabolic production of hydrogen peroxide and acrolein, both strong oxidizers, they can potentially be the cause of cellular harm during stress. In fact, somewhat enigmatic but strong positive relationship between abiotic stress and foliar polyamines has been proposed as a potential biochemical marker of persistent environmental stress in forest trees in which phenotypic symptoms of stress are not yet visible. Such markers may help forewarn forest managers to undertake amelioration strategies before the appearance of visual symptoms of stress and damage at which stage it is often too late for implementing strategies for stress remediation and reversal of damage. This review provides a comprehensive and critical evaluation of the published literature on interactions between abiotic stress and polyamines in plants, and examines the experimental strategies used to understand the functional significance of this relationship with the aim of improving plant productivity, especially under conditions of abiotic stress.

No MeSH data available.


Related in: MedlinePlus