Limits...
Absence of cospeciation between the uncultured Frankia microsymbionts and the disjunct actinorhizal Coriaria species.

Nouioui I, Ghodhbane-Gtari F, Fernandez MP, Boudabous A, Normand P, Gtari M - Biomed Res Int (2014)

Bottom Line: This symbiotic association has drawn interest because of the disjunct geographical distribution of Coriaria in four separate areas of the world and in the context of evolutionary relationships between host plants and their uncultured microsymbionts.Total DNA extracted from root nodules collected from five species: C. myrtifolia, C. arborea, C. nepalensis, C. japonica, and C. microphylla, growing in the Mediterranean area (Morocco and France), New Zealand, Pakistan, Japan, and Mexico, respectively, was used to amplify glnA gene (glutamine synthetase), dnaA gene (chromosome replication initiator), and the nif DK IGS (intergenic spacer between nifD and nifK genes) in Frankia and the matK gene (chloroplast-encoded maturase K) and the intergenic transcribed spacers (18S rRNA-ITS1-5.8S rRNA-ITS2-28S rRNA) in Coriaria species.Phylogenetic reconstruction indicated that the radiations of Frankia strains and Coriaria species are not congruent.

View Article: PubMed Central - PubMed

Affiliation: Laboratoire Microorganismes et Biomolécules Actives, Université de Tunis El Manar (FST) et Université Carthage (INSAT), 2092 Tunis, Tunisia.

ABSTRACT
Coriaria is an actinorhizal plant that forms root nodules in symbiosis with nitrogen-fixing actinobacteria of the genus Frankia. This symbiotic association has drawn interest because of the disjunct geographical distribution of Coriaria in four separate areas of the world and in the context of evolutionary relationships between host plants and their uncultured microsymbionts. The evolution of Frankia-Coriaria symbioses was examined from a phylogenetic viewpoint using multiple genetic markers in both bacteria and host-plant partners. Total DNA extracted from root nodules collected from five species: C. myrtifolia, C. arborea, C. nepalensis, C. japonica, and C. microphylla, growing in the Mediterranean area (Morocco and France), New Zealand, Pakistan, Japan, and Mexico, respectively, was used to amplify glnA gene (glutamine synthetase), dnaA gene (chromosome replication initiator), and the nif DK IGS (intergenic spacer between nifD and nifK genes) in Frankia and the matK gene (chloroplast-encoded maturase K) and the intergenic transcribed spacers (18S rRNA-ITS1-5.8S rRNA-ITS2-28S rRNA) in Coriaria species. Phylogenetic reconstruction indicated that the radiations of Frankia strains and Coriaria species are not congruent. The lack of cospeciation between the two symbiotic partners may be explained by host shift at high taxonomic rank together with wind dispersal and/or survival in nonhost rhizosphere.

Show MeSH

Related in: MedlinePlus

Distribution of Coriaria species. Root nodules have been sampled from C. myrtifolia, C. arborea, C. nepalensis, C. japonica, and C. microphylla growing in Mediterranean areas (Morocco and France), New Zealand, Pakistan, Japan, and Mexico, respectively. Short arrows indicate sampling sites for this study while long arrows indicate possible routes of dispersal as discussed.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4016943&req=5

fig2: Distribution of Coriaria species. Root nodules have been sampled from C. myrtifolia, C. arborea, C. nepalensis, C. japonica, and C. microphylla growing in Mediterranean areas (Morocco and France), New Zealand, Pakistan, Japan, and Mexico, respectively. Short arrows indicate sampling sites for this study while long arrows indicate possible routes of dispersal as discussed.

Mentions: Topology and clustering of Coriaria phylogeny obtained in the current study are similar to those obtained by Yokoyama et al. [19], while the position at the base of the host plant species from New Zealand, C. arborea, and the South American C. ruscifolia and C. microphylla species was contrary to that of Yokoyama et al. [19] who found the Eurasian species at the base using rbcL (a large subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase) and matK (maturase K) genes. The present study suggests that the Coriaria ancestor may have emerged between Asia and NZ and then dispersed worldwide and that the Asian lineage may have given rise relatively recently to the Mediterranean species, while the NZ lineage gave rise to the North American species (Figure 2).


Absence of cospeciation between the uncultured Frankia microsymbionts and the disjunct actinorhizal Coriaria species.

Nouioui I, Ghodhbane-Gtari F, Fernandez MP, Boudabous A, Normand P, Gtari M - Biomed Res Int (2014)

Distribution of Coriaria species. Root nodules have been sampled from C. myrtifolia, C. arborea, C. nepalensis, C. japonica, and C. microphylla growing in Mediterranean areas (Morocco and France), New Zealand, Pakistan, Japan, and Mexico, respectively. Short arrows indicate sampling sites for this study while long arrows indicate possible routes of dispersal as discussed.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4016943&req=5

fig2: Distribution of Coriaria species. Root nodules have been sampled from C. myrtifolia, C. arborea, C. nepalensis, C. japonica, and C. microphylla growing in Mediterranean areas (Morocco and France), New Zealand, Pakistan, Japan, and Mexico, respectively. Short arrows indicate sampling sites for this study while long arrows indicate possible routes of dispersal as discussed.
Mentions: Topology and clustering of Coriaria phylogeny obtained in the current study are similar to those obtained by Yokoyama et al. [19], while the position at the base of the host plant species from New Zealand, C. arborea, and the South American C. ruscifolia and C. microphylla species was contrary to that of Yokoyama et al. [19] who found the Eurasian species at the base using rbcL (a large subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase) and matK (maturase K) genes. The present study suggests that the Coriaria ancestor may have emerged between Asia and NZ and then dispersed worldwide and that the Asian lineage may have given rise relatively recently to the Mediterranean species, while the NZ lineage gave rise to the North American species (Figure 2).

Bottom Line: This symbiotic association has drawn interest because of the disjunct geographical distribution of Coriaria in four separate areas of the world and in the context of evolutionary relationships between host plants and their uncultured microsymbionts.Total DNA extracted from root nodules collected from five species: C. myrtifolia, C. arborea, C. nepalensis, C. japonica, and C. microphylla, growing in the Mediterranean area (Morocco and France), New Zealand, Pakistan, Japan, and Mexico, respectively, was used to amplify glnA gene (glutamine synthetase), dnaA gene (chromosome replication initiator), and the nif DK IGS (intergenic spacer between nifD and nifK genes) in Frankia and the matK gene (chloroplast-encoded maturase K) and the intergenic transcribed spacers (18S rRNA-ITS1-5.8S rRNA-ITS2-28S rRNA) in Coriaria species.Phylogenetic reconstruction indicated that the radiations of Frankia strains and Coriaria species are not congruent.

View Article: PubMed Central - PubMed

Affiliation: Laboratoire Microorganismes et Biomolécules Actives, Université de Tunis El Manar (FST) et Université Carthage (INSAT), 2092 Tunis, Tunisia.

ABSTRACT
Coriaria is an actinorhizal plant that forms root nodules in symbiosis with nitrogen-fixing actinobacteria of the genus Frankia. This symbiotic association has drawn interest because of the disjunct geographical distribution of Coriaria in four separate areas of the world and in the context of evolutionary relationships between host plants and their uncultured microsymbionts. The evolution of Frankia-Coriaria symbioses was examined from a phylogenetic viewpoint using multiple genetic markers in both bacteria and host-plant partners. Total DNA extracted from root nodules collected from five species: C. myrtifolia, C. arborea, C. nepalensis, C. japonica, and C. microphylla, growing in the Mediterranean area (Morocco and France), New Zealand, Pakistan, Japan, and Mexico, respectively, was used to amplify glnA gene (glutamine synthetase), dnaA gene (chromosome replication initiator), and the nif DK IGS (intergenic spacer between nifD and nifK genes) in Frankia and the matK gene (chloroplast-encoded maturase K) and the intergenic transcribed spacers (18S rRNA-ITS1-5.8S rRNA-ITS2-28S rRNA) in Coriaria species. Phylogenetic reconstruction indicated that the radiations of Frankia strains and Coriaria species are not congruent. The lack of cospeciation between the two symbiotic partners may be explained by host shift at high taxonomic rank together with wind dispersal and/or survival in nonhost rhizosphere.

Show MeSH
Related in: MedlinePlus