Limits...
Feature tracking measurement of dyssynchrony from cardiovascular magnetic resonance cine acquisitions: comparison with echocardiographic speckle tracking.

Onishi T, Saha SK, Ludwig DR, Onishi T, Marek JJ, Cavalcante JL, Schelbert EB, Schwartzman D, Gorcsan J - J Cardiovasc Magn Reson (2013)

Bottom Line: Analysis of left ventricular (LV) mechanical dyssynchrony may provide incremental prognostic information regarding cardiac resynchronization therapy (CRT) response in addition to QRS width alone.These were large (up to 100% or more) relative to the small mean delays measured in more synchronous patients, but acceptable (mainly <25%) in those with mean delays of >200 ms.The clinical usefulness of the method, for example in predicting prognosis in CRT patients, remains to be investigated.

View Article: PubMed Central - HTML - PubMed

Affiliation: The University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, USA. gorcsanj@upmc.edu.

ABSTRACT

Background: Analysis of left ventricular (LV) mechanical dyssynchrony may provide incremental prognostic information regarding cardiac resynchronization therapy (CRT) response in addition to QRS width alone. Our objective was to quantify LV dyssynchrony using feature tracking post processing of routine cardiovascular magnetic resonance (CMR) cine acquisitions (FT-CMR) in comparison to speckle tracking echocardiography.

Methods: We studied 72 consecutive patients who had both steady-state free precession CMR and echocardiography. Mid-LV short axis CMR cines were analyzed using FT-CMR software and compared with echocardiographic speckle tracking radial dyssynchrony (time difference between the anteroseptal and posterior wall peak strain).

Results: Radial dyssynchrony analysis was possible by FT-CMR in all patients, and in 67 (93%) by echocardiography. Dyssynchrony by FT-CMR and speckle tracking showed limits of agreement of strain delays of ± 84 ms. These were large (up to 100% or more) relative to the small mean delays measured in more synchronous patients, but acceptable (mainly <25%) in those with mean delays of >200 ms. Radial dyssynchrony was significantly greater in wide QRS patients than narrow QRS patients by both FT-CMR (radial strain delay 230 ± 94 vs. 77 ± 92* ms) and speckle tracking (radial strain delay 242 ± 101 vs. 75 ± 88* ms, all *p < 0.001).

Conclusions: FT-CMR delivered measurements of radial dyssynchrony from CMR cine acquisitions which, at least for the patients with more marked dyssynchrony, showed reasonable agreement with those from speckle tracking echocardiography. The clinical usefulness of the method, for example in predicting prognosis in CRT patients, remains to be investigated.

Show MeSH

Related in: MedlinePlus

Example of radial time-strain curves by speckle tracking echocardiography (top panel) and feature tracking CMR (bottom panel) in a patient with left ventricular (LV) dyssynchrony, demonstrating dyssynchronous time-to-peak-strain curves with early peak strain in anterior septum (Ant-Sep) segment (green curve) and delayed peak strain in posterior lateral segments (deep blue curve).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4016574&req=5

Figure 2: Example of radial time-strain curves by speckle tracking echocardiography (top panel) and feature tracking CMR (bottom panel) in a patient with left ventricular (LV) dyssynchrony, demonstrating dyssynchronous time-to-peak-strain curves with early peak strain in anterior septum (Ant-Sep) segment (green curve) and delayed peak strain in posterior lateral segments (deep blue curve).

Mentions: A semi-automated feature tracking CMR software (FT-CMR) (2D Cardiac Performance Analysis MR© Version 3.0.0.105, TomTec, Germany) was used as a vector-based analysis tool that based on a hierarchical algorithm that operates at multiple levels using two-dimensional (2-D) feature tracking techniques [16-18]. LV strain was analyzed from routine DICOM data sets by investigators blinded to the clinical, echocardiographic and all other CMR data. A region of interest was traced on the endo- and epi-cardium from a short axis view at the mid-papillary level similar to echocardiographic imaging planes. Adjustment of the region of interest was done after visual assessment during cine loop playback to ensure that the LV segments were tracked appropriately. The color-coded strain curves were extracted from the gray-scale images and were displayed. The entire FT-CMR analytic process required approximately 3 minutes. Radial dyssynchrony was defined as a time difference between the anteroseptal and posterior wall segmental peak strain, and standard deviation (SD) of time to peak strain (Figures 1 and 2).


Feature tracking measurement of dyssynchrony from cardiovascular magnetic resonance cine acquisitions: comparison with echocardiographic speckle tracking.

Onishi T, Saha SK, Ludwig DR, Onishi T, Marek JJ, Cavalcante JL, Schelbert EB, Schwartzman D, Gorcsan J - J Cardiovasc Magn Reson (2013)

Example of radial time-strain curves by speckle tracking echocardiography (top panel) and feature tracking CMR (bottom panel) in a patient with left ventricular (LV) dyssynchrony, demonstrating dyssynchronous time-to-peak-strain curves with early peak strain in anterior septum (Ant-Sep) segment (green curve) and delayed peak strain in posterior lateral segments (deep blue curve).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4016574&req=5

Figure 2: Example of radial time-strain curves by speckle tracking echocardiography (top panel) and feature tracking CMR (bottom panel) in a patient with left ventricular (LV) dyssynchrony, demonstrating dyssynchronous time-to-peak-strain curves with early peak strain in anterior septum (Ant-Sep) segment (green curve) and delayed peak strain in posterior lateral segments (deep blue curve).
Mentions: A semi-automated feature tracking CMR software (FT-CMR) (2D Cardiac Performance Analysis MR© Version 3.0.0.105, TomTec, Germany) was used as a vector-based analysis tool that based on a hierarchical algorithm that operates at multiple levels using two-dimensional (2-D) feature tracking techniques [16-18]. LV strain was analyzed from routine DICOM data sets by investigators blinded to the clinical, echocardiographic and all other CMR data. A region of interest was traced on the endo- and epi-cardium from a short axis view at the mid-papillary level similar to echocardiographic imaging planes. Adjustment of the region of interest was done after visual assessment during cine loop playback to ensure that the LV segments were tracked appropriately. The color-coded strain curves were extracted from the gray-scale images and were displayed. The entire FT-CMR analytic process required approximately 3 minutes. Radial dyssynchrony was defined as a time difference between the anteroseptal and posterior wall segmental peak strain, and standard deviation (SD) of time to peak strain (Figures 1 and 2).

Bottom Line: Analysis of left ventricular (LV) mechanical dyssynchrony may provide incremental prognostic information regarding cardiac resynchronization therapy (CRT) response in addition to QRS width alone.These were large (up to 100% or more) relative to the small mean delays measured in more synchronous patients, but acceptable (mainly <25%) in those with mean delays of >200 ms.The clinical usefulness of the method, for example in predicting prognosis in CRT patients, remains to be investigated.

View Article: PubMed Central - HTML - PubMed

Affiliation: The University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, USA. gorcsanj@upmc.edu.

ABSTRACT

Background: Analysis of left ventricular (LV) mechanical dyssynchrony may provide incremental prognostic information regarding cardiac resynchronization therapy (CRT) response in addition to QRS width alone. Our objective was to quantify LV dyssynchrony using feature tracking post processing of routine cardiovascular magnetic resonance (CMR) cine acquisitions (FT-CMR) in comparison to speckle tracking echocardiography.

Methods: We studied 72 consecutive patients who had both steady-state free precession CMR and echocardiography. Mid-LV short axis CMR cines were analyzed using FT-CMR software and compared with echocardiographic speckle tracking radial dyssynchrony (time difference between the anteroseptal and posterior wall peak strain).

Results: Radial dyssynchrony analysis was possible by FT-CMR in all patients, and in 67 (93%) by echocardiography. Dyssynchrony by FT-CMR and speckle tracking showed limits of agreement of strain delays of ± 84 ms. These were large (up to 100% or more) relative to the small mean delays measured in more synchronous patients, but acceptable (mainly <25%) in those with mean delays of >200 ms. Radial dyssynchrony was significantly greater in wide QRS patients than narrow QRS patients by both FT-CMR (radial strain delay 230 ± 94 vs. 77 ± 92* ms) and speckle tracking (radial strain delay 242 ± 101 vs. 75 ± 88* ms, all *p < 0.001).

Conclusions: FT-CMR delivered measurements of radial dyssynchrony from CMR cine acquisitions which, at least for the patients with more marked dyssynchrony, showed reasonable agreement with those from speckle tracking echocardiography. The clinical usefulness of the method, for example in predicting prognosis in CRT patients, remains to be investigated.

Show MeSH
Related in: MedlinePlus