Limits...
A phylogeny for the pomatiopsidae (Gastropoda: Rissooidea): a resource for taxonomic, parasitological and biodiversity studies.

Liu L, Huo GN, He HB, Zhou B, Attwood SW - BMC Evol. Biol. (2014)

Bottom Line: Consequently, the aim of the study was to collect DNA-sequence data for as many pomatiopsid taxa as possible, as a first step in providing a resource for identification of epidemiologically significant species (by non-malacologists), for use in resolving taxonomic confusion and for testing phylogeographical hypotheses.The molecular dates and phylogenetic estimates in this study are consistent with an Australasian origin for the Pomatiopsidae and an East to West radiation via Oligocene Borneo-Philippines island hopping to Japan and then China (Triculinae arising mid-Miocene in Southeast China), and less so with a triculine origin in Tibet.The lack of monophyly in the medically important genera and indications of taxonomic inaccuracies, call for further work to identify epidemiologically significant taxa (e.g., Halewisia may be potential hosts for Schistosoma mekongi) and highlight the need for surveys to determine the true biodiversity of the Triculinae.

View Article: PubMed Central - HTML - PubMed

Affiliation: State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, 1 KeYuan 4 Lu, Chengdu, Sichuan 610041, People's Republic of China. swahuaxi@yahoo.com.

ABSTRACT

Background: The Pomatiopsidae are reported from northern India into southern China and Southeast Asia, with two sub-families, the Pomatiopsinae (which include freshwater, amphibious, terrestrial and marine species) and the freshwater Triculinae. Both include species acting as intermediate host for species of the blood-fluke Schistosoma which cause a public health problem in East Asia. Also, with around 120 species, triculine biodiversity exceeds that of any other endemic freshwater molluscan fauna. Nevertheless, the origins of the Pomatiopsidae, the factors driving such a diverse radiation and aspects of their co-evolution with Schistosoma are not fully understood. Many taxonomic questions remain; there are problems identifying medically relevant species. The predicted range is mostly unsurveyed and the true biodiversity of the family is underestimated. Consequently, the aim of the study was to collect DNA-sequence data for as many pomatiopsid taxa as possible, as a first step in providing a resource for identification of epidemiologically significant species (by non-malacologists), for use in resolving taxonomic confusion and for testing phylogeographical hypotheses.

Results: The evolutionary radiation of the Triculinae was shown to have been rapid and mostly post late Miocene. Molecular dating indicated that the radiation of these snails was driven first by the uplift of the Himalaya and onset of a monsoon system, and then by late-Pliocene global warming. The status of Erhaia as Anmicolidae is supported. The genera Tricula and Neotricula are shown to be non-monophyletic and the tribe Jullieniini may be polyphyletic (based on convergent characters). Triculinae from northern Vietnam could be derived from Gammatricula of Fujian/Yunnan, China.

Conclusions: The molecular dates and phylogenetic estimates in this study are consistent with an Australasian origin for the Pomatiopsidae and an East to West radiation via Oligocene Borneo-Philippines island hopping to Japan and then China (Triculinae arising mid-Miocene in Southeast China), and less so with a triculine origin in Tibet. The lack of monophyly in the medically important genera and indications of taxonomic inaccuracies, call for further work to identify epidemiologically significant taxa (e.g., Halewisia may be potential hosts for Schistosoma mekongi) and highlight the need for surveys to determine the true biodiversity of the Triculinae.

Show MeSH

Related in: MedlinePlus

Best-scoring tree found by ML search with RAxML. Bootstrap support values are indicated on the tree as a percentage of 100000 replicates. Support values greater than 50% are shown in bold. The outgroup was set as Lithoglyphus naticoides. Colour scheme: Lacunopsini are classed with Triculini.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4016560&req=5

Figure 4: Best-scoring tree found by ML search with RAxML. Bootstrap support values are indicated on the tree as a percentage of 100000 replicates. Support values greater than 50% are shown in bold. The outgroup was set as Lithoglyphus naticoides. Colour scheme: Lacunopsini are classed with Triculini.

Mentions: Figure 4 shows the best scoring ML tree estimated using RAxML with all the available data (including coded indels) and Lithoglyphopsis naticoides as the outgroup; the log likelihood of this tree is −11216.355271 (note: likelihoods estimated by RAxML under the current settings may differ from those of PAUP* and other similar programmes with the same data). The tree shows the following groups to be monophyletic: Bithyniidae/Hydrobiidae, Amnicolidae, Pomatiopsinae, Pachydrobiini and the genus Manningiella. The Jullieniini are found together at the base of the Pomatiopsidae, although polyphyletic. The tree shows several most unexpected relationships: the Triculinae and Triculini are not monophyletic, nor are the genera Neotricula and Tricula. Lacunopsis is clustered with the Jullieniini (rather than the Triculini) and the Pomatiopsinae arise within the Triculini (rather than at the base of the pomatiopsid clade, distinct from the Triculinae). Bootstrap support on many of the clades is low (note this is not a consensus tree); the only clades with support greater than 50% are the Japanese Pomatiopsinae, the Pachydrobiini, the triculine radiation of the lower Mekong river, and two pairs of sister species.


A phylogeny for the pomatiopsidae (Gastropoda: Rissooidea): a resource for taxonomic, parasitological and biodiversity studies.

Liu L, Huo GN, He HB, Zhou B, Attwood SW - BMC Evol. Biol. (2014)

Best-scoring tree found by ML search with RAxML. Bootstrap support values are indicated on the tree as a percentage of 100000 replicates. Support values greater than 50% are shown in bold. The outgroup was set as Lithoglyphus naticoides. Colour scheme: Lacunopsini are classed with Triculini.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4016560&req=5

Figure 4: Best-scoring tree found by ML search with RAxML. Bootstrap support values are indicated on the tree as a percentage of 100000 replicates. Support values greater than 50% are shown in bold. The outgroup was set as Lithoglyphus naticoides. Colour scheme: Lacunopsini are classed with Triculini.
Mentions: Figure 4 shows the best scoring ML tree estimated using RAxML with all the available data (including coded indels) and Lithoglyphopsis naticoides as the outgroup; the log likelihood of this tree is −11216.355271 (note: likelihoods estimated by RAxML under the current settings may differ from those of PAUP* and other similar programmes with the same data). The tree shows the following groups to be monophyletic: Bithyniidae/Hydrobiidae, Amnicolidae, Pomatiopsinae, Pachydrobiini and the genus Manningiella. The Jullieniini are found together at the base of the Pomatiopsidae, although polyphyletic. The tree shows several most unexpected relationships: the Triculinae and Triculini are not monophyletic, nor are the genera Neotricula and Tricula. Lacunopsis is clustered with the Jullieniini (rather than the Triculini) and the Pomatiopsinae arise within the Triculini (rather than at the base of the pomatiopsid clade, distinct from the Triculinae). Bootstrap support on many of the clades is low (note this is not a consensus tree); the only clades with support greater than 50% are the Japanese Pomatiopsinae, the Pachydrobiini, the triculine radiation of the lower Mekong river, and two pairs of sister species.

Bottom Line: Consequently, the aim of the study was to collect DNA-sequence data for as many pomatiopsid taxa as possible, as a first step in providing a resource for identification of epidemiologically significant species (by non-malacologists), for use in resolving taxonomic confusion and for testing phylogeographical hypotheses.The molecular dates and phylogenetic estimates in this study are consistent with an Australasian origin for the Pomatiopsidae and an East to West radiation via Oligocene Borneo-Philippines island hopping to Japan and then China (Triculinae arising mid-Miocene in Southeast China), and less so with a triculine origin in Tibet.The lack of monophyly in the medically important genera and indications of taxonomic inaccuracies, call for further work to identify epidemiologically significant taxa (e.g., Halewisia may be potential hosts for Schistosoma mekongi) and highlight the need for surveys to determine the true biodiversity of the Triculinae.

View Article: PubMed Central - HTML - PubMed

Affiliation: State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, 1 KeYuan 4 Lu, Chengdu, Sichuan 610041, People's Republic of China. swahuaxi@yahoo.com.

ABSTRACT

Background: The Pomatiopsidae are reported from northern India into southern China and Southeast Asia, with two sub-families, the Pomatiopsinae (which include freshwater, amphibious, terrestrial and marine species) and the freshwater Triculinae. Both include species acting as intermediate host for species of the blood-fluke Schistosoma which cause a public health problem in East Asia. Also, with around 120 species, triculine biodiversity exceeds that of any other endemic freshwater molluscan fauna. Nevertheless, the origins of the Pomatiopsidae, the factors driving such a diverse radiation and aspects of their co-evolution with Schistosoma are not fully understood. Many taxonomic questions remain; there are problems identifying medically relevant species. The predicted range is mostly unsurveyed and the true biodiversity of the family is underestimated. Consequently, the aim of the study was to collect DNA-sequence data for as many pomatiopsid taxa as possible, as a first step in providing a resource for identification of epidemiologically significant species (by non-malacologists), for use in resolving taxonomic confusion and for testing phylogeographical hypotheses.

Results: The evolutionary radiation of the Triculinae was shown to have been rapid and mostly post late Miocene. Molecular dating indicated that the radiation of these snails was driven first by the uplift of the Himalaya and onset of a monsoon system, and then by late-Pliocene global warming. The status of Erhaia as Anmicolidae is supported. The genera Tricula and Neotricula are shown to be non-monophyletic and the tribe Jullieniini may be polyphyletic (based on convergent characters). Triculinae from northern Vietnam could be derived from Gammatricula of Fujian/Yunnan, China.

Conclusions: The molecular dates and phylogenetic estimates in this study are consistent with an Australasian origin for the Pomatiopsidae and an East to West radiation via Oligocene Borneo-Philippines island hopping to Japan and then China (Triculinae arising mid-Miocene in Southeast China), and less so with a triculine origin in Tibet. The lack of monophyly in the medically important genera and indications of taxonomic inaccuracies, call for further work to identify epidemiologically significant taxa (e.g., Halewisia may be potential hosts for Schistosoma mekongi) and highlight the need for surveys to determine the true biodiversity of the Triculinae.

Show MeSH
Related in: MedlinePlus