Limits...
Surface coatings of ZnO nanoparticles mitigate differentially a host of transcriptional, protein and signalling responses in primary human olfactory cells.

Osmond-McLeod MJ, Osmond RI, Oytam Y, McCall MJ, Feltis B, Mackay-Sim A, Wood SA, Cook AL - Part Fibre Toxicol (2013)

Bottom Line: Four types of commercially-available zinc oxide (ZnO) nanoparticles, two coated and two uncoated, were examined for their effects on primary human cells cultured from the olfactory mucosa.ZnO nanoparticle toxicity in hONS cells was mediated through a battery of mechanisms largely related to cell stress, inflammatory response and apoptosis, but not activation of mechanisms that repair damaged DNA.Surface coatings on the ZnO nanoparticles mitigated these cellular responses to varying degrees.

View Article: PubMed Central - HTML - PubMed

Affiliation: CSIRO Advanced Materials TCP (Nanosafety), and CSIRO Animal, Food and Health Sciences, PO Box 52, North Ryde, NSW 1670, Australia. megan.osmond@csiro.au.

ABSTRACT

Background: Inhaled nanoparticles have been reported in some instances to translocate from the nostril to the olfactory bulb in exposed rats. In close proximity to the olfactory bulb is the olfactory mucosa, within which resides a niche of multipotent cells. Cells isolated from this area may provide a relevant in vitro system to investigate potential effects of workplace exposure to inhaled zinc oxide nanoparticles.

Methods: Four types of commercially-available zinc oxide (ZnO) nanoparticles, two coated and two uncoated, were examined for their effects on primary human cells cultured from the olfactory mucosa. Human olfactory neurosphere-derived (hONS) cells from healthy adult donors were analyzed for modulation of cytokine levels, activation of intracellular signalling pathways, changes in gene-expression patterns across the whole genome, and compromised cellular function over a 24 h period following exposure to the nanoparticles suspended in cell culture medium.

Results: ZnO nanoparticle toxicity in hONS cells was mediated through a battery of mechanisms largely related to cell stress, inflammatory response and apoptosis, but not activation of mechanisms that repair damaged DNA. Surface coatings on the ZnO nanoparticles mitigated these cellular responses to varying degrees.

Conclusions: The results indicate that care should be taken in the workplace to minimize generation of, and exposure to, aerosols of uncoated ZnO nanoparticles, given the adverse responses reported here using multipotent cells derived from the olfactory mucosa.

Show MeSH

Related in: MedlinePlus

Nanoparticle morphologies and size distributions. TEM images of ZnO nanoparticles used in this study alongside boxplots showing the distributions of particle lengths and widths (A. Z-COTE; B. HP1; C. MAX) or diameter (D. Nanosun), depending on whether particles were mainly rod-shaped or spherical, respectively. 90–300 measurements were made for each dimension. The vertical line in the box represents the median value and the edges of the box represent the lower and upper quartiles. The whiskers at the ends of the horizontal lines represent minimum and maximum values. Scale bar for TEM images = 200 nm.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4016547&req=5

Figure 2: Nanoparticle morphologies and size distributions. TEM images of ZnO nanoparticles used in this study alongside boxplots showing the distributions of particle lengths and widths (A. Z-COTE; B. HP1; C. MAX) or diameter (D. Nanosun), depending on whether particles were mainly rod-shaped or spherical, respectively. 90–300 measurements were made for each dimension. The vertical line in the box represents the median value and the edges of the box represent the lower and upper quartiles. The whiskers at the ends of the horizontal lines represent minimum and maximum values. Scale bar for TEM images = 200 nm.

Mentions: The three BASF products, Z-COTE, HP1 and MAX, are typically rod-shaped, with heterogeneous sizes ranging up to ~350 nm, as assessed by transmission electron microscopy (TEM). In general, the uncoated Z-COTE particles are wider (average of 44 nm) and shorter (73 nm) than the coated HP1 (28 nm, 96 nm) and coated MAX (36 nm, 95 nm) (Table 1). These sizes are broadly consistent with the manufacturer’s specifications, which describe particle size as <200 nm. In contrast, the uncoated Nanosun sample, from Micronisers, consists of mostly spheroidal particles, and shows a comparatively tighter size distribution with an average particle diameter of 25 nm, consistent with the manufacturer’s specifications (30 nm). The morphology for each type of nanoparticle in its powder form can be seen in TEM images, with their mean sizes and size distributions indicated in box-plots, in Figure 2.


Surface coatings of ZnO nanoparticles mitigate differentially a host of transcriptional, protein and signalling responses in primary human olfactory cells.

Osmond-McLeod MJ, Osmond RI, Oytam Y, McCall MJ, Feltis B, Mackay-Sim A, Wood SA, Cook AL - Part Fibre Toxicol (2013)

Nanoparticle morphologies and size distributions. TEM images of ZnO nanoparticles used in this study alongside boxplots showing the distributions of particle lengths and widths (A. Z-COTE; B. HP1; C. MAX) or diameter (D. Nanosun), depending on whether particles were mainly rod-shaped or spherical, respectively. 90–300 measurements were made for each dimension. The vertical line in the box represents the median value and the edges of the box represent the lower and upper quartiles. The whiskers at the ends of the horizontal lines represent minimum and maximum values. Scale bar for TEM images = 200 nm.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4016547&req=5

Figure 2: Nanoparticle morphologies and size distributions. TEM images of ZnO nanoparticles used in this study alongside boxplots showing the distributions of particle lengths and widths (A. Z-COTE; B. HP1; C. MAX) or diameter (D. Nanosun), depending on whether particles were mainly rod-shaped or spherical, respectively. 90–300 measurements were made for each dimension. The vertical line in the box represents the median value and the edges of the box represent the lower and upper quartiles. The whiskers at the ends of the horizontal lines represent minimum and maximum values. Scale bar for TEM images = 200 nm.
Mentions: The three BASF products, Z-COTE, HP1 and MAX, are typically rod-shaped, with heterogeneous sizes ranging up to ~350 nm, as assessed by transmission electron microscopy (TEM). In general, the uncoated Z-COTE particles are wider (average of 44 nm) and shorter (73 nm) than the coated HP1 (28 nm, 96 nm) and coated MAX (36 nm, 95 nm) (Table 1). These sizes are broadly consistent with the manufacturer’s specifications, which describe particle size as <200 nm. In contrast, the uncoated Nanosun sample, from Micronisers, consists of mostly spheroidal particles, and shows a comparatively tighter size distribution with an average particle diameter of 25 nm, consistent with the manufacturer’s specifications (30 nm). The morphology for each type of nanoparticle in its powder form can be seen in TEM images, with their mean sizes and size distributions indicated in box-plots, in Figure 2.

Bottom Line: Four types of commercially-available zinc oxide (ZnO) nanoparticles, two coated and two uncoated, were examined for their effects on primary human cells cultured from the olfactory mucosa.ZnO nanoparticle toxicity in hONS cells was mediated through a battery of mechanisms largely related to cell stress, inflammatory response and apoptosis, but not activation of mechanisms that repair damaged DNA.Surface coatings on the ZnO nanoparticles mitigated these cellular responses to varying degrees.

View Article: PubMed Central - HTML - PubMed

Affiliation: CSIRO Advanced Materials TCP (Nanosafety), and CSIRO Animal, Food and Health Sciences, PO Box 52, North Ryde, NSW 1670, Australia. megan.osmond@csiro.au.

ABSTRACT

Background: Inhaled nanoparticles have been reported in some instances to translocate from the nostril to the olfactory bulb in exposed rats. In close proximity to the olfactory bulb is the olfactory mucosa, within which resides a niche of multipotent cells. Cells isolated from this area may provide a relevant in vitro system to investigate potential effects of workplace exposure to inhaled zinc oxide nanoparticles.

Methods: Four types of commercially-available zinc oxide (ZnO) nanoparticles, two coated and two uncoated, were examined for their effects on primary human cells cultured from the olfactory mucosa. Human olfactory neurosphere-derived (hONS) cells from healthy adult donors were analyzed for modulation of cytokine levels, activation of intracellular signalling pathways, changes in gene-expression patterns across the whole genome, and compromised cellular function over a 24 h period following exposure to the nanoparticles suspended in cell culture medium.

Results: ZnO nanoparticle toxicity in hONS cells was mediated through a battery of mechanisms largely related to cell stress, inflammatory response and apoptosis, but not activation of mechanisms that repair damaged DNA. Surface coatings on the ZnO nanoparticles mitigated these cellular responses to varying degrees.

Conclusions: The results indicate that care should be taken in the workplace to minimize generation of, and exposure to, aerosols of uncoated ZnO nanoparticles, given the adverse responses reported here using multipotent cells derived from the olfactory mucosa.

Show MeSH
Related in: MedlinePlus