Limits...
A role for ultrasonic vocalisation in social communication and divergence of natural populations of the house mouse (Mus musculus domesticus).

von Merten S, Hoier S, Pfeifle C, Tautz D - PLoS ONE (2014)

Bottom Line: We have analysed song frequency and duration, as well as spectral features of songs and syllables.Using a statistical syntax analysis we find complex temporal sequencing patterns that could suggest that the syntax conveys meaningful information to the receivers.We conclude that wild mice use USV for complex social interactions and that USV patterns can diverge fast between populations.

View Article: PubMed Central - PubMed

Affiliation: Department Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany.

ABSTRACT
It has long been known that rodents emit signals in the ultrasonic range, but their role in social communication and mating is still under active exploration. While inbred strains of house mice have emerged as a favourite model to study ultrasonic vocalisation (USV) patterns, studies in wild animals and natural situations are still rare. We focus here on two wild derived mouse populations. We recorded them in dyadic encounters for extended periods of time to assess possible roles of USVs and their divergence between allopatric populations. We have analysed song frequency and duration, as well as spectral features of songs and syllables. We show that the populations have indeed diverged in several of these aspects and that USV patterns emitted in a mating context differ from those emitted in same sex encounters. We find that females vocalize not less, in encounters with another female even more than males. This implies that the current focus of USVs being emitted mainly by males within the mating context needs to be reconsidered. Using a statistical syntax analysis we find complex temporal sequencing patterns that could suggest that the syntax conveys meaningful information to the receivers. We conclude that wild mice use USV for complex social interactions and that USV patterns can diverge fast between populations.

Show MeSH

Related in: MedlinePlus

Scheme of the USV recording box.The box is made from grey PVC (side and back walls) and non-reflecting glass (front window). Four equal compartments are equipped with bedding, food and water, and acoustically monitored via an ultrasound microphone from above. The partner compartments (compartment pairs at the left and right) are connected via a little window made from metal grid (indicated in white) to allow sensory contact between recording partners (drawing not to scale.)
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4016290&req=5

pone-0097244-g001: Scheme of the USV recording box.The box is made from grey PVC (side and back walls) and non-reflecting glass (front window). Four equal compartments are equipped with bedding, food and water, and acoustically monitored via an ultrasound microphone from above. The partner compartments (compartment pairs at the left and right) are connected via a little window made from metal grid (indicated in white) to allow sensory contact between recording partners (drawing not to scale.)

Mentions: Sound recordings were conducted in a separate room (20–24°C, 35–55% humidity) inside a USV recording box (Figure 1). The recording box was custom-built from grey PVC (side walls and floor), metal grid (top) and non-reflecting glass (front). It consisted of four separate compartments, each measuring 60×25×60 cm (l×w×h). The two left and the two right compartments were connected via a window made from a perforated metal plate (dimension of window 5×5 cm, spacing of the metal plate 1 mm). This window could be tightly closed by attaching a fitting piece of PVC. With the window open, the two mice sitting in such two neighbouring compartments (termed "recording partners" in the following) had the chance to use it for visual, olfactory, acoustic and partly tactile contact. Each compartment was equipped with standard bedding material, paper stripes and a cardboard box. Food and water was provided at libitum.


A role for ultrasonic vocalisation in social communication and divergence of natural populations of the house mouse (Mus musculus domesticus).

von Merten S, Hoier S, Pfeifle C, Tautz D - PLoS ONE (2014)

Scheme of the USV recording box.The box is made from grey PVC (side and back walls) and non-reflecting glass (front window). Four equal compartments are equipped with bedding, food and water, and acoustically monitored via an ultrasound microphone from above. The partner compartments (compartment pairs at the left and right) are connected via a little window made from metal grid (indicated in white) to allow sensory contact between recording partners (drawing not to scale.)
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4016290&req=5

pone-0097244-g001: Scheme of the USV recording box.The box is made from grey PVC (side and back walls) and non-reflecting glass (front window). Four equal compartments are equipped with bedding, food and water, and acoustically monitored via an ultrasound microphone from above. The partner compartments (compartment pairs at the left and right) are connected via a little window made from metal grid (indicated in white) to allow sensory contact between recording partners (drawing not to scale.)
Mentions: Sound recordings were conducted in a separate room (20–24°C, 35–55% humidity) inside a USV recording box (Figure 1). The recording box was custom-built from grey PVC (side walls and floor), metal grid (top) and non-reflecting glass (front). It consisted of four separate compartments, each measuring 60×25×60 cm (l×w×h). The two left and the two right compartments were connected via a window made from a perforated metal plate (dimension of window 5×5 cm, spacing of the metal plate 1 mm). This window could be tightly closed by attaching a fitting piece of PVC. With the window open, the two mice sitting in such two neighbouring compartments (termed "recording partners" in the following) had the chance to use it for visual, olfactory, acoustic and partly tactile contact. Each compartment was equipped with standard bedding material, paper stripes and a cardboard box. Food and water was provided at libitum.

Bottom Line: We have analysed song frequency and duration, as well as spectral features of songs and syllables.Using a statistical syntax analysis we find complex temporal sequencing patterns that could suggest that the syntax conveys meaningful information to the receivers.We conclude that wild mice use USV for complex social interactions and that USV patterns can diverge fast between populations.

View Article: PubMed Central - PubMed

Affiliation: Department Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany.

ABSTRACT
It has long been known that rodents emit signals in the ultrasonic range, but their role in social communication and mating is still under active exploration. While inbred strains of house mice have emerged as a favourite model to study ultrasonic vocalisation (USV) patterns, studies in wild animals and natural situations are still rare. We focus here on two wild derived mouse populations. We recorded them in dyadic encounters for extended periods of time to assess possible roles of USVs and their divergence between allopatric populations. We have analysed song frequency and duration, as well as spectral features of songs and syllables. We show that the populations have indeed diverged in several of these aspects and that USV patterns emitted in a mating context differ from those emitted in same sex encounters. We find that females vocalize not less, in encounters with another female even more than males. This implies that the current focus of USVs being emitted mainly by males within the mating context needs to be reconsidered. Using a statistical syntax analysis we find complex temporal sequencing patterns that could suggest that the syntax conveys meaningful information to the receivers. We conclude that wild mice use USV for complex social interactions and that USV patterns can diverge fast between populations.

Show MeSH
Related in: MedlinePlus