Limits...
Aqueous solution synthesis of reduced graphene oxide-germanium nanoparticles and their electrical property testing.

Yin H, Luo J, Yang P, Yin P - Nanoscale Res Lett (2013)

Bottom Line: Aqueous solution synthesis of reduced graphene oxide-germanium nanoparticles (RGO-GeNPs) was developed using graphene oxide (GO) as stabilizer, which could be conducive to obtain better excellent electrical properties.Stable aqueous dispersibility of RGO-GeNPs was further improved by poly(sodium 4-styrenesulfonate) (PSS) to obtain amphiphilic polymer-coated RGO-GeNPs (PSS-RGO-GeNPs).The resulting nanocomposites exhibited high specific capacity and good cycling stability after 80 cycles.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Chemistry, Jinan University, Guangzhou 510632, People's Republic of China. typh@jnu.edu.cn.

ABSTRACT
Aqueous solution synthesis of reduced graphene oxide-germanium nanoparticles (RGO-GeNPs) was developed using graphene oxide (GO) as stabilizer, which could be conducive to obtain better excellent electrical properties. The information about morphology and chemical composition of the nanomaterials were obtained by TEM, FTIR, EDS, and XRD measurements. Stable aqueous dispersibility of RGO-GeNPs was further improved by poly(sodium 4-styrenesulfonate) (PSS) to obtain amphiphilic polymer-coated RGO-GeNPs (PSS-RGO-GeNPs). A possible mechanism to interpret the formation of RGO-GeNPs was proposed. The as-synthesized RGO-GeNPs showed excellent battery performance when used as an anode material for Li ion batteries. The resulting nanocomposites exhibited high specific capacity and good cycling stability after 80 cycles. This study showed a facile strategy to synthetize graphene and Ge nanocomposites which can be a hopeful anode material with excellent electrical properties for lithium ion batteries.

No MeSH data available.


Related in: MedlinePlus

The electrochemical performance of Ge nanomaterials. (a) The initial discharge–charge curve of the PSS-RGO-GeNPs cycled between 0 and 1.5 V under a current density of 50 mAg-1. (b) Cycling behaviors of the PSS-RGO-GeNPs, RGO-GeNPs, and RGO-Ge under a current density of 50 mAg-1. Circle, charging of PSS-RGO-GeNPs; filled diamond, discharging of PSS-RGO-GeNPs; empty inverted triangle, charging of RGO-GeNPs; right black triangle, discharging of RGO-GeNPs; empty star, charging of RGO-Ge; left filled triangle, discharging of RGO-Ge. (c) Cycling performances of PSS-RGO-GeNPs, RGO-GeNPs, and RGO-Ge under different current densities. Right empty triangle, charging of PSS-RGO-GeNPs; filled triangle, discharging of PSS-RGO-GeNPs; circle, charging of RGO-GeNPs; half-filled diamond, discharging of RGO-GeNPs; left filled triangle, discharging of RGO-Ge. (d) Nyquist plots of the electrodes of PSS-RGO-GeNPs, RGO-GeNPs, and RGO-Ge.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4016143&req=5

Figure 5: The electrochemical performance of Ge nanomaterials. (a) The initial discharge–charge curve of the PSS-RGO-GeNPs cycled between 0 and 1.5 V under a current density of 50 mAg-1. (b) Cycling behaviors of the PSS-RGO-GeNPs, RGO-GeNPs, and RGO-Ge under a current density of 50 mAg-1. Circle, charging of PSS-RGO-GeNPs; filled diamond, discharging of PSS-RGO-GeNPs; empty inverted triangle, charging of RGO-GeNPs; right black triangle, discharging of RGO-GeNPs; empty star, charging of RGO-Ge; left filled triangle, discharging of RGO-Ge. (c) Cycling performances of PSS-RGO-GeNPs, RGO-GeNPs, and RGO-Ge under different current densities. Right empty triangle, charging of PSS-RGO-GeNPs; filled triangle, discharging of PSS-RGO-GeNPs; circle, charging of RGO-GeNPs; half-filled diamond, discharging of RGO-GeNPs; left filled triangle, discharging of RGO-Ge. (d) Nyquist plots of the electrodes of PSS-RGO-GeNPs, RGO-GeNPs, and RGO-Ge.

Mentions: The electrochemical performance of the PSS-RGO-GeNPs was tested by galvanostatic discharge/charge technique. Figure 5a showed the discharge/charge voltage profiles cycled under a current density of 50 mAg-1 over the voltage range from 0 to 1.5 V vs. Li+/Li. The initial discharge and charge specific capacities were 764 and 517 mAhg-1, respectively, based on the total mass of the PSS-RGO-GeNPs. The large initial discharge capacity of the nanocomposite could be attributed to the formation of a solid electrolyte interface (SEI) layer.


Aqueous solution synthesis of reduced graphene oxide-germanium nanoparticles and their electrical property testing.

Yin H, Luo J, Yang P, Yin P - Nanoscale Res Lett (2013)

The electrochemical performance of Ge nanomaterials. (a) The initial discharge–charge curve of the PSS-RGO-GeNPs cycled between 0 and 1.5 V under a current density of 50 mAg-1. (b) Cycling behaviors of the PSS-RGO-GeNPs, RGO-GeNPs, and RGO-Ge under a current density of 50 mAg-1. Circle, charging of PSS-RGO-GeNPs; filled diamond, discharging of PSS-RGO-GeNPs; empty inverted triangle, charging of RGO-GeNPs; right black triangle, discharging of RGO-GeNPs; empty star, charging of RGO-Ge; left filled triangle, discharging of RGO-Ge. (c) Cycling performances of PSS-RGO-GeNPs, RGO-GeNPs, and RGO-Ge under different current densities. Right empty triangle, charging of PSS-RGO-GeNPs; filled triangle, discharging of PSS-RGO-GeNPs; circle, charging of RGO-GeNPs; half-filled diamond, discharging of RGO-GeNPs; left filled triangle, discharging of RGO-Ge. (d) Nyquist plots of the electrodes of PSS-RGO-GeNPs, RGO-GeNPs, and RGO-Ge.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4016143&req=5

Figure 5: The electrochemical performance of Ge nanomaterials. (a) The initial discharge–charge curve of the PSS-RGO-GeNPs cycled between 0 and 1.5 V under a current density of 50 mAg-1. (b) Cycling behaviors of the PSS-RGO-GeNPs, RGO-GeNPs, and RGO-Ge under a current density of 50 mAg-1. Circle, charging of PSS-RGO-GeNPs; filled diamond, discharging of PSS-RGO-GeNPs; empty inverted triangle, charging of RGO-GeNPs; right black triangle, discharging of RGO-GeNPs; empty star, charging of RGO-Ge; left filled triangle, discharging of RGO-Ge. (c) Cycling performances of PSS-RGO-GeNPs, RGO-GeNPs, and RGO-Ge under different current densities. Right empty triangle, charging of PSS-RGO-GeNPs; filled triangle, discharging of PSS-RGO-GeNPs; circle, charging of RGO-GeNPs; half-filled diamond, discharging of RGO-GeNPs; left filled triangle, discharging of RGO-Ge. (d) Nyquist plots of the electrodes of PSS-RGO-GeNPs, RGO-GeNPs, and RGO-Ge.
Mentions: The electrochemical performance of the PSS-RGO-GeNPs was tested by galvanostatic discharge/charge technique. Figure 5a showed the discharge/charge voltage profiles cycled under a current density of 50 mAg-1 over the voltage range from 0 to 1.5 V vs. Li+/Li. The initial discharge and charge specific capacities were 764 and 517 mAhg-1, respectively, based on the total mass of the PSS-RGO-GeNPs. The large initial discharge capacity of the nanocomposite could be attributed to the formation of a solid electrolyte interface (SEI) layer.

Bottom Line: Aqueous solution synthesis of reduced graphene oxide-germanium nanoparticles (RGO-GeNPs) was developed using graphene oxide (GO) as stabilizer, which could be conducive to obtain better excellent electrical properties.Stable aqueous dispersibility of RGO-GeNPs was further improved by poly(sodium 4-styrenesulfonate) (PSS) to obtain amphiphilic polymer-coated RGO-GeNPs (PSS-RGO-GeNPs).The resulting nanocomposites exhibited high specific capacity and good cycling stability after 80 cycles.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Chemistry, Jinan University, Guangzhou 510632, People's Republic of China. typh@jnu.edu.cn.

ABSTRACT
Aqueous solution synthesis of reduced graphene oxide-germanium nanoparticles (RGO-GeNPs) was developed using graphene oxide (GO) as stabilizer, which could be conducive to obtain better excellent electrical properties. The information about morphology and chemical composition of the nanomaterials were obtained by TEM, FTIR, EDS, and XRD measurements. Stable aqueous dispersibility of RGO-GeNPs was further improved by poly(sodium 4-styrenesulfonate) (PSS) to obtain amphiphilic polymer-coated RGO-GeNPs (PSS-RGO-GeNPs). A possible mechanism to interpret the formation of RGO-GeNPs was proposed. The as-synthesized RGO-GeNPs showed excellent battery performance when used as an anode material for Li ion batteries. The resulting nanocomposites exhibited high specific capacity and good cycling stability after 80 cycles. This study showed a facile strategy to synthetize graphene and Ge nanocomposites which can be a hopeful anode material with excellent electrical properties for lithium ion batteries.

No MeSH data available.


Related in: MedlinePlus