Limits...
ALDH expression characterizes G1-phase proliferating beta cells during pregnancy.

Zhang L, Wang L, Liu X, Zheng D, Liu S, Liu C - PLoS ONE (2014)

Bottom Line: To determine precisely at which phase beta cells activate ALDH activity and thus become aldeflour+, we co-stained insulin with additional proliferation markers, phosphohistone3 (PHH3, a marker for M-phase proliferating cells) and Bromodeoxyuridine (BrdU, a marker for S-phase proliferating cells).Our data thus reveal a potential change in ALDH activity of proliferating beta cells during pregnancy, which provides a novel method for isolation and analysis of proliferating beta cells.Moreover, our data also suggest that caution needs to be taken on interpretation of Aldefluor lineage-tracing data in pancreas.

View Article: PubMed Central - PubMed

Affiliation: The Department of Gynecology and Obstetrics, Shengjing hospital affiliated to China Medical University, Shenyang, China.

ABSTRACT
High levels of aldehyde dehydrogenase (ALDH) activity have been detected in various progenitor and stem cells. Thus, Aldefluor fluorescence, which represents precisely the ALDH activity, has been widely used for the identification, evaluation, and isolation of stem and progenitor cells. Recently, ALDH activity was detected in embryonic and adult mouse pancreas, specifically in adult centroacinar and terminal duct cells supposed to harbor endocrine and exocrine progenitor cells in the adult pancreas. Nevertheless, ALDH activity and aldeflour fluorescence have not been examined in beta cells. Here, we report a dynamic increase in the number of aldeflour+ beta cells during pregnancy. Interestingly, nearly all these aldeflour+ beta cells are positive for Ki-67, suggesting that they are in an active cell cycle (G1, S and M phases). To determine precisely at which phase beta cells activate ALDH activity and thus become aldeflour+, we co-stained insulin with additional proliferation markers, phosphohistone3 (PHH3, a marker for M-phase proliferating cells) and Bromodeoxyuridine (BrdU, a marker for S-phase proliferating cells). Our data show little aldeflour+ beta cells that were positive for either PHH3, or BrdU, suggesting that beta cells activate ALDH and become Aldefluor+ when they enter G1-phase of active cell cycle, but may downregulate ALDH when they leave G1-phase and enter S phase. Our data thus reveal a potential change in ALDH activity of proliferating beta cells during pregnancy, which provides a novel method for isolation and analysis of proliferating beta cells. Moreover, our data also suggest that caution needs to be taken on interpretation of Aldefluor lineage-tracing data in pancreas.

Show MeSH
Aldefluor+ cells are detected in the islets of pregnant mice.(A) Representative flow cytometry analysis of aldefluor fluorescence in the bone marrow cells (+/− treatment with a specific ALDH inhibitor DEAB) and isolated islets from pregnant mice 9 days after pregnancy (G9), compared with non-pregnant mice (G0). While no aldefluor+ cells were detected in G0 islets, aldefluor+ cells (circled) were readily detected in the islets from G9 islets. (B) Isolated G9 aldeflouor+ cells were immunostained positive for ALDH. (C) Quantification of aldefluor+ cells in the islet fraction from pregnant mice at 3, 6, 9, 12, 15 and 18 days after pregnancy (G3, G6, G9, G12, G15 and G18, respectively). These data show that in the mouse pancreas, islet cells upregulate ALDH activity during pregnancy. SSC: side-light scatter. *: p<0.05.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4008573&req=5

pone-0096204-g001: Aldefluor+ cells are detected in the islets of pregnant mice.(A) Representative flow cytometry analysis of aldefluor fluorescence in the bone marrow cells (+/− treatment with a specific ALDH inhibitor DEAB) and isolated islets from pregnant mice 9 days after pregnancy (G9), compared with non-pregnant mice (G0). While no aldefluor+ cells were detected in G0 islets, aldefluor+ cells (circled) were readily detected in the islets from G9 islets. (B) Isolated G9 aldeflouor+ cells were immunostained positive for ALDH. (C) Quantification of aldefluor+ cells in the islet fraction from pregnant mice at 3, 6, 9, 12, 15 and 18 days after pregnancy (G3, G6, G9, G12, G15 and G18, respectively). These data show that in the mouse pancreas, islet cells upregulate ALDH activity during pregnancy. SSC: side-light scatter. *: p<0.05.

Mentions: Aldefluor fluorescence represents precisely the ALDH activity, and has been widely used for the identification, evaluation, and isolation of stem and progenitor cells. Therefore, we first examined the aldefluor fluorescence in the isolated islets from pregnant mice at 3, 6, 9, 12, 15 and 18 days after pregnancy (G3, G6, G9, G12, G15 and G18, respectively), compared with non-pregnant mice (G0) of the same age (12 weeks of age) at the same period. Bone marrow cells were used as a positive control, while bone marrow cells pre-treated with 1.6 mM diethylaminobenzaldehyde (DEAB), a specific ALDH inhibitor, was used as a negative control (Fig. 1A). Isolated aldeflouor+ cells were immunostained positive for ALDH (Fig. 1B). While no aldefluor+ cells were detected in G0 islets, aldefluor+ cells were readily detected in the islets from the mice at different times in the pregnancy (Fig. 1C: G3: 0.89±0.14% in total islet cells, G6: 1.88±0.32%, G9: 3.45±0.65%, G12: 1.25±0.32%, G15: 0.82±0.21%, G18: 0.52±0.16%). To our knowledge, our study is the first to show that mouse islet cells upregulate ALDH activity during pregnancy.


ALDH expression characterizes G1-phase proliferating beta cells during pregnancy.

Zhang L, Wang L, Liu X, Zheng D, Liu S, Liu C - PLoS ONE (2014)

Aldefluor+ cells are detected in the islets of pregnant mice.(A) Representative flow cytometry analysis of aldefluor fluorescence in the bone marrow cells (+/− treatment with a specific ALDH inhibitor DEAB) and isolated islets from pregnant mice 9 days after pregnancy (G9), compared with non-pregnant mice (G0). While no aldefluor+ cells were detected in G0 islets, aldefluor+ cells (circled) were readily detected in the islets from G9 islets. (B) Isolated G9 aldeflouor+ cells were immunostained positive for ALDH. (C) Quantification of aldefluor+ cells in the islet fraction from pregnant mice at 3, 6, 9, 12, 15 and 18 days after pregnancy (G3, G6, G9, G12, G15 and G18, respectively). These data show that in the mouse pancreas, islet cells upregulate ALDH activity during pregnancy. SSC: side-light scatter. *: p<0.05.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4008573&req=5

pone-0096204-g001: Aldefluor+ cells are detected in the islets of pregnant mice.(A) Representative flow cytometry analysis of aldefluor fluorescence in the bone marrow cells (+/− treatment with a specific ALDH inhibitor DEAB) and isolated islets from pregnant mice 9 days after pregnancy (G9), compared with non-pregnant mice (G0). While no aldefluor+ cells were detected in G0 islets, aldefluor+ cells (circled) were readily detected in the islets from G9 islets. (B) Isolated G9 aldeflouor+ cells were immunostained positive for ALDH. (C) Quantification of aldefluor+ cells in the islet fraction from pregnant mice at 3, 6, 9, 12, 15 and 18 days after pregnancy (G3, G6, G9, G12, G15 and G18, respectively). These data show that in the mouse pancreas, islet cells upregulate ALDH activity during pregnancy. SSC: side-light scatter. *: p<0.05.
Mentions: Aldefluor fluorescence represents precisely the ALDH activity, and has been widely used for the identification, evaluation, and isolation of stem and progenitor cells. Therefore, we first examined the aldefluor fluorescence in the isolated islets from pregnant mice at 3, 6, 9, 12, 15 and 18 days after pregnancy (G3, G6, G9, G12, G15 and G18, respectively), compared with non-pregnant mice (G0) of the same age (12 weeks of age) at the same period. Bone marrow cells were used as a positive control, while bone marrow cells pre-treated with 1.6 mM diethylaminobenzaldehyde (DEAB), a specific ALDH inhibitor, was used as a negative control (Fig. 1A). Isolated aldeflouor+ cells were immunostained positive for ALDH (Fig. 1B). While no aldefluor+ cells were detected in G0 islets, aldefluor+ cells were readily detected in the islets from the mice at different times in the pregnancy (Fig. 1C: G3: 0.89±0.14% in total islet cells, G6: 1.88±0.32%, G9: 3.45±0.65%, G12: 1.25±0.32%, G15: 0.82±0.21%, G18: 0.52±0.16%). To our knowledge, our study is the first to show that mouse islet cells upregulate ALDH activity during pregnancy.

Bottom Line: To determine precisely at which phase beta cells activate ALDH activity and thus become aldeflour+, we co-stained insulin with additional proliferation markers, phosphohistone3 (PHH3, a marker for M-phase proliferating cells) and Bromodeoxyuridine (BrdU, a marker for S-phase proliferating cells).Our data thus reveal a potential change in ALDH activity of proliferating beta cells during pregnancy, which provides a novel method for isolation and analysis of proliferating beta cells.Moreover, our data also suggest that caution needs to be taken on interpretation of Aldefluor lineage-tracing data in pancreas.

View Article: PubMed Central - PubMed

Affiliation: The Department of Gynecology and Obstetrics, Shengjing hospital affiliated to China Medical University, Shenyang, China.

ABSTRACT
High levels of aldehyde dehydrogenase (ALDH) activity have been detected in various progenitor and stem cells. Thus, Aldefluor fluorescence, which represents precisely the ALDH activity, has been widely used for the identification, evaluation, and isolation of stem and progenitor cells. Recently, ALDH activity was detected in embryonic and adult mouse pancreas, specifically in adult centroacinar and terminal duct cells supposed to harbor endocrine and exocrine progenitor cells in the adult pancreas. Nevertheless, ALDH activity and aldeflour fluorescence have not been examined in beta cells. Here, we report a dynamic increase in the number of aldeflour+ beta cells during pregnancy. Interestingly, nearly all these aldeflour+ beta cells are positive for Ki-67, suggesting that they are in an active cell cycle (G1, S and M phases). To determine precisely at which phase beta cells activate ALDH activity and thus become aldeflour+, we co-stained insulin with additional proliferation markers, phosphohistone3 (PHH3, a marker for M-phase proliferating cells) and Bromodeoxyuridine (BrdU, a marker for S-phase proliferating cells). Our data show little aldeflour+ beta cells that were positive for either PHH3, or BrdU, suggesting that beta cells activate ALDH and become Aldefluor+ when they enter G1-phase of active cell cycle, but may downregulate ALDH when they leave G1-phase and enter S phase. Our data thus reveal a potential change in ALDH activity of proliferating beta cells during pregnancy, which provides a novel method for isolation and analysis of proliferating beta cells. Moreover, our data also suggest that caution needs to be taken on interpretation of Aldefluor lineage-tracing data in pancreas.

Show MeSH