Limits...
Assessment of ecological and human health risks of heavy metal contamination in agriculture soils disturbed by pipeline construction.

Shi P, Xiao J, Wang Y, Chen L - Int J Environ Res Public Health (2014)

Bottom Line: The results showed that the impact zone of pipeline installation on soil heavy metal contamination was restricted to pipeline right-of-way (RoW), which had higher Igeo of Cd, Cu, Ni and Pb than that of 20 m and 50 m.Pipeline RoW resulted in higher human health risks than that of 20 m and 50 m, and children were more susceptible to non-carcinogenic hazard risk.The findings in this study should help better understand the type, degree, scope and sources of heavy metal pollution from pipeline construction to reduce pollutant emissions, and are helpful in providing a scientific basis for future risk management.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. shipeng015@163.com.

ABSTRACT
The construction of large-scale infrastructures such as nature gas/oil pipelines involves extensive disturbance to regional ecosystems. Few studies have documented the soil degradation and heavy metal contamination caused by pipeline construction. In this study, chromium (Cr), cadmium (Cd), copper (Cu), nickel (Ni), lead (Pb) and zinc (Zn) levels were evaluated using Index of Geo-accumulation (Igeo) and Potential Ecological Risk Index (RI) values, and human health risk assessments were used to elucidate the level and spatial variation of heavy metal pollution risks. The results showed that the impact zone of pipeline installation on soil heavy metal contamination was restricted to pipeline right-of-way (RoW), which had higher Igeo of Cd, Cu, Ni and Pb than that of 20 m and 50 m. RI showed a declining tendency in different zones as follows: trench > working zone > piling area > 20 m > 50 m. Pipeline RoW resulted in higher human health risks than that of 20 m and 50 m, and children were more susceptible to non-carcinogenic hazard risk. Cluster analysis showed that Cu, Ni, Pb and Cd had similar sources, drawing attention to the anthropogenic activity. The findings in this study should help better understand the type, degree, scope and sources of heavy metal pollution from pipeline construction to reduce pollutant emissions, and are helpful in providing a scientific basis for future risk management.

Show MeSH
Concentrations of soil heavy metal at two sampling sites along pipeline. E: east, W: west, N: north, S: south.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3986989&req=5

ijerph-11-02504-f003: Concentrations of soil heavy metal at two sampling sites along pipeline. E: east, W: west, N: north, S: south.

Mentions: Pipeline RoW including trenches, working zones and piling areas had higher concentrations of Cd, Cr, Ni, Pb and Zn than those at 20 m (E20 and W20) and 50 m (E50 and W50) distance from the pipeline at Site 1 (Figure 3). The maximum concentrations of Cd, Cu, Ni and Zn existed simultaneously in the samples collected from the trench at Site 1, and concentrations of Cd, Cu and Ni of trench were almost twice that of the background values. The highest concentration of 31.24 mg/kg for Pb was found in the working zone at Site 1 that was twice the background value (16.8 mg/kg). Cu, Ni, Pb, Zn concentrations were similar between 20 m and 50 m distances from both sides of the pipeline. Concentrations of Cd, Cr, Ni, Pb and Zn at 50 m distance from the pipeline were similar to background values at Site 1. There were increasing trends in the concentrations of Cd, Ni and Pb at Site 2 as follows: pipeline RoW zones (trench, piling area and working zone) > 20 m (N20 and S20) > 50 m (N50 and S50). The concentration of Pb at Site 2 was the highest in the working zone, followed by the trench and piling areas, respectively. Concentrations of Cd, Cr, Ni, Pb and Zn at 50 m distance from the pipelines were similar to the background values. The results indicated that the scale of the impact of pipeline construction on soil heavy metal contamination is restricted to some 20 m from the pipeline.


Assessment of ecological and human health risks of heavy metal contamination in agriculture soils disturbed by pipeline construction.

Shi P, Xiao J, Wang Y, Chen L - Int J Environ Res Public Health (2014)

Concentrations of soil heavy metal at two sampling sites along pipeline. E: east, W: west, N: north, S: south.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3986989&req=5

ijerph-11-02504-f003: Concentrations of soil heavy metal at two sampling sites along pipeline. E: east, W: west, N: north, S: south.
Mentions: Pipeline RoW including trenches, working zones and piling areas had higher concentrations of Cd, Cr, Ni, Pb and Zn than those at 20 m (E20 and W20) and 50 m (E50 and W50) distance from the pipeline at Site 1 (Figure 3). The maximum concentrations of Cd, Cu, Ni and Zn existed simultaneously in the samples collected from the trench at Site 1, and concentrations of Cd, Cu and Ni of trench were almost twice that of the background values. The highest concentration of 31.24 mg/kg for Pb was found in the working zone at Site 1 that was twice the background value (16.8 mg/kg). Cu, Ni, Pb, Zn concentrations were similar between 20 m and 50 m distances from both sides of the pipeline. Concentrations of Cd, Cr, Ni, Pb and Zn at 50 m distance from the pipeline were similar to background values at Site 1. There were increasing trends in the concentrations of Cd, Ni and Pb at Site 2 as follows: pipeline RoW zones (trench, piling area and working zone) > 20 m (N20 and S20) > 50 m (N50 and S50). The concentration of Pb at Site 2 was the highest in the working zone, followed by the trench and piling areas, respectively. Concentrations of Cd, Cr, Ni, Pb and Zn at 50 m distance from the pipelines were similar to the background values. The results indicated that the scale of the impact of pipeline construction on soil heavy metal contamination is restricted to some 20 m from the pipeline.

Bottom Line: The results showed that the impact zone of pipeline installation on soil heavy metal contamination was restricted to pipeline right-of-way (RoW), which had higher Igeo of Cd, Cu, Ni and Pb than that of 20 m and 50 m.Pipeline RoW resulted in higher human health risks than that of 20 m and 50 m, and children were more susceptible to non-carcinogenic hazard risk.The findings in this study should help better understand the type, degree, scope and sources of heavy metal pollution from pipeline construction to reduce pollutant emissions, and are helpful in providing a scientific basis for future risk management.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. shipeng015@163.com.

ABSTRACT
The construction of large-scale infrastructures such as nature gas/oil pipelines involves extensive disturbance to regional ecosystems. Few studies have documented the soil degradation and heavy metal contamination caused by pipeline construction. In this study, chromium (Cr), cadmium (Cd), copper (Cu), nickel (Ni), lead (Pb) and zinc (Zn) levels were evaluated using Index of Geo-accumulation (Igeo) and Potential Ecological Risk Index (RI) values, and human health risk assessments were used to elucidate the level and spatial variation of heavy metal pollution risks. The results showed that the impact zone of pipeline installation on soil heavy metal contamination was restricted to pipeline right-of-way (RoW), which had higher Igeo of Cd, Cu, Ni and Pb than that of 20 m and 50 m. RI showed a declining tendency in different zones as follows: trench > working zone > piling area > 20 m > 50 m. Pipeline RoW resulted in higher human health risks than that of 20 m and 50 m, and children were more susceptible to non-carcinogenic hazard risk. Cluster analysis showed that Cu, Ni, Pb and Cd had similar sources, drawing attention to the anthropogenic activity. The findings in this study should help better understand the type, degree, scope and sources of heavy metal pollution from pipeline construction to reduce pollutant emissions, and are helpful in providing a scientific basis for future risk management.

Show MeSH