Limits...
Occurrence of tick-transmitted pathogens in dogs in Jos, Plateau State, Nigeria.

Adamu M, Troskie M, Oshadu DO, Malatji DP, Penzhorn BL, Matjila PT - Parasit Vectors (2014)

Bottom Line: In B. rossi-positive specimens, we aimed to determine whether the BrEMA1 gene occurred and to compare genotypes with those found in other isolates.Up to 8 tick-borne pathogens possibly occur in the dog population at Jos, with B. rossi being the most prevalent.The absence of the BrEMA1 gene suggests that B. rossi occurring in that area may be less virulent than South African isolates.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa. banie.penzhorn@up.ac.za.

ABSTRACT

Background: Canine babesiosis caused by Babesia rossi, transmitted by Haemaphysalis elliptica in South Africa, has also been reported from Nigeria. Although H. leachi (sensu lato) is widespread in sub-Saharan Africa, published literature on the occurrence of canine babesiosis is meagre. It has been postulated that the genotype of Babesia rossi Erythrocyte Membrane Antigen 1 (BrEMA1) may be linked to virulence of the specific isolate. The primary objective of this study was to detect and characterise tick-borne pathogens in dogs presented to a veterinary hospital using molecular techniques. In B. rossi-positive specimens, we aimed to determine whether the BrEMA1 gene occurred and to compare genotypes with those found in other isolates. Lastly, we wished to identify the tick species that were recovered from the sampled dogs.

Methods: Blood specimens (n = 100) were collected during January to March 2010 from domestic dogs presented at an animal hospital in Jos, Plateau State, Nigeria. They were screened for the presence of Babesia/Theileria and Ehrlichia/Anaplasma genomic DNA using PCR and Reverse Line Blot (RLB) assays. Positive B. rossi specimens were tested for the presence of the BrEMA1gene using an RT-PCR. In addition, ticks were collected from dogs found to be infested during sampling.

Results: On RLB, 72 (72%) of the specimens were positive for one or more haemoparasites. Of the positive specimens, 38 (53%) were infected with B. rossi; 9 (13%) with Theileria sp. (sable); 5 (7%) with either Ehrlichia canis or Anaplasma sp. Omatjenne, respectively; 3 (4%) with Theileria equi; and 1 (1%) with B. vogeli and E. ruminantium, respectively. Co-infections were detected in 13 (18%) of the specimens. Results of RT-PCR screening for the BrEMA1 gene were negative. A total of 146 ticks belonging to 8 species were collected and identified: Rhipicephalus sanguineus 107 (73%), Haemaphysalis leachi (sensu stricto) 27 (18%), R. turanicus 3 (2%), and Amblyomma variegatum, H. elliptica, R. lunulatus, R. muhsamae and R. senegalensis 1 (1%), respectively.

Conclusions: Up to 8 tick-borne pathogens possibly occur in the dog population at Jos, with B. rossi being the most prevalent. The absence of the BrEMA1 gene suggests that B. rossi occurring in that area may be less virulent than South African isolates.

Show MeSH

Related in: MedlinePlus

Neighbor-joining tree, with the Kimura two-parameter distance [47]calculation showing the phylogenetic relationship of RLB 42 and 67 to related species based on the 18S rRNA gene sequences. Relationships are presented as an unrooted tree with branch lengths being proportional to the estimated genetic distance between the strains.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC3974742&req=5

Figure 1: Neighbor-joining tree, with the Kimura two-parameter distance [47]calculation showing the phylogenetic relationship of RLB 42 and 67 to related species based on the 18S rRNA gene sequences. Relationships are presented as an unrooted tree with branch lengths being proportional to the estimated genetic distance between the strains.

Mentions: Near-full-length 18S rRNA gene sequences were obtained from samples RLB42 and RLB67. A BLAST search revealed both samples showed a 99% similarity with B. rossi, a South African isolate (Accession number: L19079.1) and with B. rossi from Sudan (Accession number: DQ111760.1). The observed sequences were phylogenetically analysed to confirm their similarities. A neighbor-joining phylogenetic analysis was used to reveal the relationships between the generated 18S rRNA gene and other related Babesia and Theileria species. The analyses showed that the RLB42 and RLB67 sequences were closely related to B. rossi from South Africa and Sudan (FigureĀ 1).


Occurrence of tick-transmitted pathogens in dogs in Jos, Plateau State, Nigeria.

Adamu M, Troskie M, Oshadu DO, Malatji DP, Penzhorn BL, Matjila PT - Parasit Vectors (2014)

Neighbor-joining tree, with the Kimura two-parameter distance [47]calculation showing the phylogenetic relationship of RLB 42 and 67 to related species based on the 18S rRNA gene sequences. Relationships are presented as an unrooted tree with branch lengths being proportional to the estimated genetic distance between the strains.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC3974742&req=5

Figure 1: Neighbor-joining tree, with the Kimura two-parameter distance [47]calculation showing the phylogenetic relationship of RLB 42 and 67 to related species based on the 18S rRNA gene sequences. Relationships are presented as an unrooted tree with branch lengths being proportional to the estimated genetic distance between the strains.
Mentions: Near-full-length 18S rRNA gene sequences were obtained from samples RLB42 and RLB67. A BLAST search revealed both samples showed a 99% similarity with B. rossi, a South African isolate (Accession number: L19079.1) and with B. rossi from Sudan (Accession number: DQ111760.1). The observed sequences were phylogenetically analysed to confirm their similarities. A neighbor-joining phylogenetic analysis was used to reveal the relationships between the generated 18S rRNA gene and other related Babesia and Theileria species. The analyses showed that the RLB42 and RLB67 sequences were closely related to B. rossi from South Africa and Sudan (FigureĀ 1).

Bottom Line: In B. rossi-positive specimens, we aimed to determine whether the BrEMA1 gene occurred and to compare genotypes with those found in other isolates.Up to 8 tick-borne pathogens possibly occur in the dog population at Jos, with B. rossi being the most prevalent.The absence of the BrEMA1 gene suggests that B. rossi occurring in that area may be less virulent than South African isolates.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa. banie.penzhorn@up.ac.za.

ABSTRACT

Background: Canine babesiosis caused by Babesia rossi, transmitted by Haemaphysalis elliptica in South Africa, has also been reported from Nigeria. Although H. leachi (sensu lato) is widespread in sub-Saharan Africa, published literature on the occurrence of canine babesiosis is meagre. It has been postulated that the genotype of Babesia rossi Erythrocyte Membrane Antigen 1 (BrEMA1) may be linked to virulence of the specific isolate. The primary objective of this study was to detect and characterise tick-borne pathogens in dogs presented to a veterinary hospital using molecular techniques. In B. rossi-positive specimens, we aimed to determine whether the BrEMA1 gene occurred and to compare genotypes with those found in other isolates. Lastly, we wished to identify the tick species that were recovered from the sampled dogs.

Methods: Blood specimens (n = 100) were collected during January to March 2010 from domestic dogs presented at an animal hospital in Jos, Plateau State, Nigeria. They were screened for the presence of Babesia/Theileria and Ehrlichia/Anaplasma genomic DNA using PCR and Reverse Line Blot (RLB) assays. Positive B. rossi specimens were tested for the presence of the BrEMA1gene using an RT-PCR. In addition, ticks were collected from dogs found to be infested during sampling.

Results: On RLB, 72 (72%) of the specimens were positive for one or more haemoparasites. Of the positive specimens, 38 (53%) were infected with B. rossi; 9 (13%) with Theileria sp. (sable); 5 (7%) with either Ehrlichia canis or Anaplasma sp. Omatjenne, respectively; 3 (4%) with Theileria equi; and 1 (1%) with B. vogeli and E. ruminantium, respectively. Co-infections were detected in 13 (18%) of the specimens. Results of RT-PCR screening for the BrEMA1 gene were negative. A total of 146 ticks belonging to 8 species were collected and identified: Rhipicephalus sanguineus 107 (73%), Haemaphysalis leachi (sensu stricto) 27 (18%), R. turanicus 3 (2%), and Amblyomma variegatum, H. elliptica, R. lunulatus, R. muhsamae and R. senegalensis 1 (1%), respectively.

Conclusions: Up to 8 tick-borne pathogens possibly occur in the dog population at Jos, with B. rossi being the most prevalent. The absence of the BrEMA1 gene suggests that B. rossi occurring in that area may be less virulent than South African isolates.

Show MeSH
Related in: MedlinePlus