Limits...
Oleanolic acid controls allergic and inflammatory responses in experimental allergic conjunctivitis.

Córdova C, Gutiérrez B, Martínez-García C, Martín R, Gallego-Muñoz P, Hernández M, Nieto ML - PLoS ONE (2014)

Bottom Line: The result of allergen exposure is a strong Th2-mediated response along with conjunctival mast cell degranulation and eosinophilic infiltration.In vitro studies, on relevant cells of the allergic process, revealed that OA reduced the proliferative and migratory response, as well as the synthesis of proinflammatory mediators on EoL-1 eosinophils and RBL-2H3 mast cells exposed to allergic and/or crucial inflammatory stimuli such as RWP, sPLA2-IIA or eotaxin.Taken together, these findings demonstrate the beneficial activity of OA in ocular allergic processes and may provide a new intervention strategy and potential therapy for allergic diseases.

View Article: PubMed Central - PubMed

Affiliation: Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas-Universidad de Valladolid, Valladolid, Spain.

ABSTRACT
Pollen is the most common aeroallergen to cause seasonal conjunctivitis. The result of allergen exposure is a strong Th2-mediated response along with conjunctival mast cell degranulation and eosinophilic infiltration. Oleanolic acid (OA) is natural a triterpene that displays strong anti-inflammatory and immunomodulatory properties being an active anti-allergic molecule on hypersensitivity reaction models. However, its effect on inflammatory ocular disorders including conjunctivitis, has not yet been addressed. Hence, using a Ragweed pollen (RWP)-specific allergic conjunctivitis (EAC) mouse model we study here whether OA could modify responses associated to allergic processes. We found that OA treatment restricted mast cell degranulation and infiltration of eosinophils in conjunctival tissue and decreased allergen-specific Igs levels in EAC mice. Th2-type cytokines, secreted phospholipase A2 type-IIA (sPLA2-IIA), and chemokines levels were also significantly diminished in the conjunctiva and serum of OA-treated EAC mice. Moreover, OA treatment also suppressed RWP-specific T-cell proliferation. In vitro studies, on relevant cells of the allergic process, revealed that OA reduced the proliferative and migratory response, as well as the synthesis of proinflammatory mediators on EoL-1 eosinophils and RBL-2H3 mast cells exposed to allergic and/or crucial inflammatory stimuli such as RWP, sPLA2-IIA or eotaxin. Taken together, these findings demonstrate the beneficial activity of OA in ocular allergic processes and may provide a new intervention strategy and potential therapy for allergic diseases.

Show MeSH

Related in: MedlinePlus

OA abrogated in vitro biological functions on EoL-1 and RBL-2H3 cells.EoL-1 (A,C) and RBL-2H3 (B,D) cells were incubated with the indicated stimuli in presence or absence of different concentrations of OA. (A,B) Cell proliferation was assayed 24 h after stimulation. (C,D) Cell migration was measured as described in Materials and Methods. Bars represent means ± SD. (*P<0.001 vs unstimulated cells; **P<0.001 vs stimuli without triterpene; n = 3).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3974667&req=5

pone-0091282-g005: OA abrogated in vitro biological functions on EoL-1 and RBL-2H3 cells.EoL-1 (A,C) and RBL-2H3 (B,D) cells were incubated with the indicated stimuli in presence or absence of different concentrations of OA. (A,B) Cell proliferation was assayed 24 h after stimulation. (C,D) Cell migration was measured as described in Materials and Methods. Bars represent means ± SD. (*P<0.001 vs unstimulated cells; **P<0.001 vs stimuli without triterpene; n = 3).

Mentions: EoL-1 eosinophils and RBL-2H3 mast cells were treated with different concentrations of RWP or eotaxin in presence or absence of either 5 or 10 μM of OA for 24 h. As shown in Figure 5A and B, the presence of OA significantly reduced, the proliferative response induced by the agonists, in a dose-dependent manner. The presence of OA had no significant influence on the viability of either resting or activated cells.


Oleanolic acid controls allergic and inflammatory responses in experimental allergic conjunctivitis.

Córdova C, Gutiérrez B, Martínez-García C, Martín R, Gallego-Muñoz P, Hernández M, Nieto ML - PLoS ONE (2014)

OA abrogated in vitro biological functions on EoL-1 and RBL-2H3 cells.EoL-1 (A,C) and RBL-2H3 (B,D) cells were incubated with the indicated stimuli in presence or absence of different concentrations of OA. (A,B) Cell proliferation was assayed 24 h after stimulation. (C,D) Cell migration was measured as described in Materials and Methods. Bars represent means ± SD. (*P<0.001 vs unstimulated cells; **P<0.001 vs stimuli without triterpene; n = 3).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3974667&req=5

pone-0091282-g005: OA abrogated in vitro biological functions on EoL-1 and RBL-2H3 cells.EoL-1 (A,C) and RBL-2H3 (B,D) cells were incubated with the indicated stimuli in presence or absence of different concentrations of OA. (A,B) Cell proliferation was assayed 24 h after stimulation. (C,D) Cell migration was measured as described in Materials and Methods. Bars represent means ± SD. (*P<0.001 vs unstimulated cells; **P<0.001 vs stimuli without triterpene; n = 3).
Mentions: EoL-1 eosinophils and RBL-2H3 mast cells were treated with different concentrations of RWP or eotaxin in presence or absence of either 5 or 10 μM of OA for 24 h. As shown in Figure 5A and B, the presence of OA significantly reduced, the proliferative response induced by the agonists, in a dose-dependent manner. The presence of OA had no significant influence on the viability of either resting or activated cells.

Bottom Line: The result of allergen exposure is a strong Th2-mediated response along with conjunctival mast cell degranulation and eosinophilic infiltration.In vitro studies, on relevant cells of the allergic process, revealed that OA reduced the proliferative and migratory response, as well as the synthesis of proinflammatory mediators on EoL-1 eosinophils and RBL-2H3 mast cells exposed to allergic and/or crucial inflammatory stimuli such as RWP, sPLA2-IIA or eotaxin.Taken together, these findings demonstrate the beneficial activity of OA in ocular allergic processes and may provide a new intervention strategy and potential therapy for allergic diseases.

View Article: PubMed Central - PubMed

Affiliation: Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas-Universidad de Valladolid, Valladolid, Spain.

ABSTRACT
Pollen is the most common aeroallergen to cause seasonal conjunctivitis. The result of allergen exposure is a strong Th2-mediated response along with conjunctival mast cell degranulation and eosinophilic infiltration. Oleanolic acid (OA) is natural a triterpene that displays strong anti-inflammatory and immunomodulatory properties being an active anti-allergic molecule on hypersensitivity reaction models. However, its effect on inflammatory ocular disorders including conjunctivitis, has not yet been addressed. Hence, using a Ragweed pollen (RWP)-specific allergic conjunctivitis (EAC) mouse model we study here whether OA could modify responses associated to allergic processes. We found that OA treatment restricted mast cell degranulation and infiltration of eosinophils in conjunctival tissue and decreased allergen-specific Igs levels in EAC mice. Th2-type cytokines, secreted phospholipase A2 type-IIA (sPLA2-IIA), and chemokines levels were also significantly diminished in the conjunctiva and serum of OA-treated EAC mice. Moreover, OA treatment also suppressed RWP-specific T-cell proliferation. In vitro studies, on relevant cells of the allergic process, revealed that OA reduced the proliferative and migratory response, as well as the synthesis of proinflammatory mediators on EoL-1 eosinophils and RBL-2H3 mast cells exposed to allergic and/or crucial inflammatory stimuli such as RWP, sPLA2-IIA or eotaxin. Taken together, these findings demonstrate the beneficial activity of OA in ocular allergic processes and may provide a new intervention strategy and potential therapy for allergic diseases.

Show MeSH
Related in: MedlinePlus