Limits...
The glutathione peroxidase gene family in Thellungiella salsuginea: genome-wide identification, classification, and gene and protein expression analysis under stress conditions.

Gao F, Chen J, Ma T, Li H, Wang N, Li Z, Zhang Z, Zhou Y - Int J Mol Sci (2014)

Bottom Line: Glutathione peroxidases (GPX) catalyze the reduction of H2O2 or organic hydroperoxides to water or corresponding alcohols using reduced glutathione, which plays an essential role in ROS (reactive oxygen species) homeostasis and stress signaling.Multiple environmental stresses and hormone response related cis-acting elements were predicted in the promoters of TsGPX genes.Our result showed that different members of the GPX gene family were coordinately regulated under specific environmental stress conditions, and supported the important roles of TsGPXs in salt and drought stress response in T. salsuginea.

View Article: PubMed Central - PubMed

Affiliation: College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China. gaofei@muc.edu.cn.

ABSTRACT
Glutathione peroxidases (GPX) catalyze the reduction of H2O2 or organic hydroperoxides to water or corresponding alcohols using reduced glutathione, which plays an essential role in ROS (reactive oxygen species) homeostasis and stress signaling. Thellungiella salsuginea (Eutrema salsugineum), a relative of Arabidopsis thaliana, displays an extremely high level of tolerance to salt, drought, cold and oxidative stresses. The enzymatic antioxidant systems may contribute to the stress tolerance of T. salsuginea. In the present study, we aimed at understanding the roles of the antioxidant enzymes in T. salsuginea by focusing on the GPX family. We identified the eight GPX genes in T. salsuginea, and the structure of the N-terminal domains indicated their putative chloroplastic, mitochondrial and cytoplasmic location. The exon-intron organization of these genes exhibited a conserved pattern among plant GPX genes. Multiple environmental stresses and hormone response related cis-acting elements were predicted in the promoters of TsGPX genes. The gene and protein expression profiles of TsGPXs in response to high level of salinity and osmotic stresses, in leaves and roots of T. salsuginea were investigated using real-time RT-PCR and western blotting analysis. Our result showed that different members of the GPX gene family were coordinately regulated under specific environmental stress conditions, and supported the important roles of TsGPXs in salt and drought stress response in T. salsuginea.

Show MeSH
Phylogenetic analyses of thirty four plant glutathione peroxidase (GPX) proteins. The tree was constructed using the neighbor-joining method of CLUSTALW, with 1000 bootstraps, and the bar indicates 0.05 substitutions per site. Each ellipse shows a clade. Abbreviations of plant species: Ts, Thellungiella salsuginea; At, Arabidopsis thaliana; Os, Oryza sativa; Zm, Zea mays, Pt, Populus trichocarpa. The plant GPXs include At1 (At2g25080), At2 (At2g31570), At3 (At2g43350), At4 (At2g48150), At5 (At3g63080), At6 (At4g11600), At7 (At4g31870), At8 (At1g63460), Pt1 (POPTR_0006s28120), Pt2 (POPTR_0007s02160), Pt5 (POPTR_0014s13490), Pt6-1 (POPTR_0001s09270), Pt6-2 (POPTR_0003s12620), Pt8 (POPTR_0001s09280), Os1 (Os04g0556300), Os2 (Os03g0358100), Os3 (Os02g0664000), Os4 (Os06g0185900), Os5 (Os11g18170), Os6 (A3AYS5_ORYSJ), Zm1 (Q6JAH6_MAIZE), Zm1-2 (B6SU31_MAIZE), Zm2 (B6T5N2_MAIZE), Zm3 (B4FRF0_MAIZE), Zm3-2 (AC204541), and Zm4 (B6U7S4_MAIZE).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3958914&req=5

f3-ijms-15-03319: Phylogenetic analyses of thirty four plant glutathione peroxidase (GPX) proteins. The tree was constructed using the neighbor-joining method of CLUSTALW, with 1000 bootstraps, and the bar indicates 0.05 substitutions per site. Each ellipse shows a clade. Abbreviations of plant species: Ts, Thellungiella salsuginea; At, Arabidopsis thaliana; Os, Oryza sativa; Zm, Zea mays, Pt, Populus trichocarpa. The plant GPXs include At1 (At2g25080), At2 (At2g31570), At3 (At2g43350), At4 (At2g48150), At5 (At3g63080), At6 (At4g11600), At7 (At4g31870), At8 (At1g63460), Pt1 (POPTR_0006s28120), Pt2 (POPTR_0007s02160), Pt5 (POPTR_0014s13490), Pt6-1 (POPTR_0001s09270), Pt6-2 (POPTR_0003s12620), Pt8 (POPTR_0001s09280), Os1 (Os04g0556300), Os2 (Os03g0358100), Os3 (Os02g0664000), Os4 (Os06g0185900), Os5 (Os11g18170), Os6 (A3AYS5_ORYSJ), Zm1 (Q6JAH6_MAIZE), Zm1-2 (B6SU31_MAIZE), Zm2 (B6T5N2_MAIZE), Zm3 (B4FRF0_MAIZE), Zm3-2 (AC204541), and Zm4 (B6U7S4_MAIZE).

Mentions: According to the alignment of TsGPX sequences shown in Figure 3 and the data presented in Table 3, the eight TsGPX proteins can be divided into three categories based on the amino acid sequence length: TsGPX1, TsGPX6 and TsGPX7 (c. 235 amino acids; 26 kDa); TsGPX2, TsGPX4, TsGPX5, and TsGPX8 (c. 170 amino acids; 19 kDa); and TsGPX3 (196 amino acids; 23 kDa). The poor homology among the N-terminal amino acid residues of TsGPX1, TsGPX6, and TsGPX7 indicated that these proteins bear signal peptides for organelle targeting (Figure 3). Protein subcellular localization prediction programs suggested that TsGPX1 and TsGPX7 has a chloroplastic N-terminal transit peptide and that TsGPX6 has an N-terminal transit peptide for targeting to mitochondria. TsGPX3 was predicted to be located in the secretory pathway (Table 3).


The glutathione peroxidase gene family in Thellungiella salsuginea: genome-wide identification, classification, and gene and protein expression analysis under stress conditions.

Gao F, Chen J, Ma T, Li H, Wang N, Li Z, Zhang Z, Zhou Y - Int J Mol Sci (2014)

Phylogenetic analyses of thirty four plant glutathione peroxidase (GPX) proteins. The tree was constructed using the neighbor-joining method of CLUSTALW, with 1000 bootstraps, and the bar indicates 0.05 substitutions per site. Each ellipse shows a clade. Abbreviations of plant species: Ts, Thellungiella salsuginea; At, Arabidopsis thaliana; Os, Oryza sativa; Zm, Zea mays, Pt, Populus trichocarpa. The plant GPXs include At1 (At2g25080), At2 (At2g31570), At3 (At2g43350), At4 (At2g48150), At5 (At3g63080), At6 (At4g11600), At7 (At4g31870), At8 (At1g63460), Pt1 (POPTR_0006s28120), Pt2 (POPTR_0007s02160), Pt5 (POPTR_0014s13490), Pt6-1 (POPTR_0001s09270), Pt6-2 (POPTR_0003s12620), Pt8 (POPTR_0001s09280), Os1 (Os04g0556300), Os2 (Os03g0358100), Os3 (Os02g0664000), Os4 (Os06g0185900), Os5 (Os11g18170), Os6 (A3AYS5_ORYSJ), Zm1 (Q6JAH6_MAIZE), Zm1-2 (B6SU31_MAIZE), Zm2 (B6T5N2_MAIZE), Zm3 (B4FRF0_MAIZE), Zm3-2 (AC204541), and Zm4 (B6U7S4_MAIZE).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3958914&req=5

f3-ijms-15-03319: Phylogenetic analyses of thirty four plant glutathione peroxidase (GPX) proteins. The tree was constructed using the neighbor-joining method of CLUSTALW, with 1000 bootstraps, and the bar indicates 0.05 substitutions per site. Each ellipse shows a clade. Abbreviations of plant species: Ts, Thellungiella salsuginea; At, Arabidopsis thaliana; Os, Oryza sativa; Zm, Zea mays, Pt, Populus trichocarpa. The plant GPXs include At1 (At2g25080), At2 (At2g31570), At3 (At2g43350), At4 (At2g48150), At5 (At3g63080), At6 (At4g11600), At7 (At4g31870), At8 (At1g63460), Pt1 (POPTR_0006s28120), Pt2 (POPTR_0007s02160), Pt5 (POPTR_0014s13490), Pt6-1 (POPTR_0001s09270), Pt6-2 (POPTR_0003s12620), Pt8 (POPTR_0001s09280), Os1 (Os04g0556300), Os2 (Os03g0358100), Os3 (Os02g0664000), Os4 (Os06g0185900), Os5 (Os11g18170), Os6 (A3AYS5_ORYSJ), Zm1 (Q6JAH6_MAIZE), Zm1-2 (B6SU31_MAIZE), Zm2 (B6T5N2_MAIZE), Zm3 (B4FRF0_MAIZE), Zm3-2 (AC204541), and Zm4 (B6U7S4_MAIZE).
Mentions: According to the alignment of TsGPX sequences shown in Figure 3 and the data presented in Table 3, the eight TsGPX proteins can be divided into three categories based on the amino acid sequence length: TsGPX1, TsGPX6 and TsGPX7 (c. 235 amino acids; 26 kDa); TsGPX2, TsGPX4, TsGPX5, and TsGPX8 (c. 170 amino acids; 19 kDa); and TsGPX3 (196 amino acids; 23 kDa). The poor homology among the N-terminal amino acid residues of TsGPX1, TsGPX6, and TsGPX7 indicated that these proteins bear signal peptides for organelle targeting (Figure 3). Protein subcellular localization prediction programs suggested that TsGPX1 and TsGPX7 has a chloroplastic N-terminal transit peptide and that TsGPX6 has an N-terminal transit peptide for targeting to mitochondria. TsGPX3 was predicted to be located in the secretory pathway (Table 3).

Bottom Line: Glutathione peroxidases (GPX) catalyze the reduction of H2O2 or organic hydroperoxides to water or corresponding alcohols using reduced glutathione, which plays an essential role in ROS (reactive oxygen species) homeostasis and stress signaling.Multiple environmental stresses and hormone response related cis-acting elements were predicted in the promoters of TsGPX genes.Our result showed that different members of the GPX gene family were coordinately regulated under specific environmental stress conditions, and supported the important roles of TsGPXs in salt and drought stress response in T. salsuginea.

View Article: PubMed Central - PubMed

Affiliation: College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China. gaofei@muc.edu.cn.

ABSTRACT
Glutathione peroxidases (GPX) catalyze the reduction of H2O2 or organic hydroperoxides to water or corresponding alcohols using reduced glutathione, which plays an essential role in ROS (reactive oxygen species) homeostasis and stress signaling. Thellungiella salsuginea (Eutrema salsugineum), a relative of Arabidopsis thaliana, displays an extremely high level of tolerance to salt, drought, cold and oxidative stresses. The enzymatic antioxidant systems may contribute to the stress tolerance of T. salsuginea. In the present study, we aimed at understanding the roles of the antioxidant enzymes in T. salsuginea by focusing on the GPX family. We identified the eight GPX genes in T. salsuginea, and the structure of the N-terminal domains indicated their putative chloroplastic, mitochondrial and cytoplasmic location. The exon-intron organization of these genes exhibited a conserved pattern among plant GPX genes. Multiple environmental stresses and hormone response related cis-acting elements were predicted in the promoters of TsGPX genes. The gene and protein expression profiles of TsGPXs in response to high level of salinity and osmotic stresses, in leaves and roots of T. salsuginea were investigated using real-time RT-PCR and western blotting analysis. Our result showed that different members of the GPX gene family were coordinately regulated under specific environmental stress conditions, and supported the important roles of TsGPXs in salt and drought stress response in T. salsuginea.

Show MeSH