Limits...
Implementation and performance of a GPS/INS tightly coupled assisted PLL architecture using MEMS inertial sensors.

Tawk Y, Tomé P, Botteron C, Stebler Y, Farine PA - Sensors (Basel) (2014)

Bottom Line: The use of global navigation satellite system receivers for navigation still presents many challenges in urban canyon and indoor environments, where satellite availability is typically reduced and received signals are attenuated.In particular, we propose a GPS/INS Tightly Coupled Assisted PLL (TCAPLL) architecture, and present most of the associated challenges that need to be addressed when dealing with very-low-performance MEMS inertial sensors.Finally, the architecture is evaluated through a test campaign using a vehicle that is driven in urban environments, with the purpose of highlighting the pros and cons of combining MEMS inertial sensors with GPS over GPS alone.

View Article: PubMed Central - PubMed

Affiliation: Polytechnique Fédérale de Lausanne, Institute of Microengineering (IMT), Electronics and Signal Processing Laboratory, Neuchâtel, Switzerland. youssef.tawk@gmail.com.

ABSTRACT
The use of global navigation satellite system receivers for navigation still presents many challenges in urban canyon and indoor environments, where satellite availability is typically reduced and received signals are attenuated. To improve the navigation performance in such environments, several enhancement methods can be implemented. For instance, external aid provided through coupling with other sensors has proven to contribute substantially to enhancing navigation performance and robustness. Within this context, coupling a very simple GPS receiver with an Inertial Navigation System (INS) based on low-cost micro-electro-mechanical systems (MEMS) inertial sensors is considered in this paper. In particular, we propose a GPS/INS Tightly Coupled Assisted PLL (TCAPLL) architecture, and present most of the associated challenges that need to be addressed when dealing with very-low-performance MEMS inertial sensors. In addition, we propose a data monitoring system in charge of checking the quality of the measurement flow in the architecture. The implementation of the TCAPLL is discussed in detail, and its performance under different scenarios is assessed. Finally, the architecture is evaluated through a test campaign using a vehicle that is driven in urban environments, with the purpose of highlighting the pros and cons of combining MEMS inertial sensors with GPS over GPS alone.

No MeSH data available.


Position error during Trajectory 1 (left) and Trajectory 2 (right).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3958239&req=5

f29-sensors-14-03768: Position error during Trajectory 1 (left) and Trajectory 2 (right).

Mentions: The position errors of the TCAPLL during Trajectory 1 and Trajectory 2 are shown in Figure 29, in comparison with the stand-alone GPS solution. The performance of the TCAPLL architecture is better, and this is also shown in Tables 6 and 7 where the standard deviation and mean of the velocity, position, and attitude errors are shown for both trajectories. The TCAPLL velocity error is reduced by 88% and 77%, and the position error by 70% and 42%, respectively, for Trajectory 1 and Trajectory 2. The smaller improvement in Trajectory 2 is due to the fact that the measurements were made mainly in good GPS conditions, for which the stand-alone GPS performs relatively well.


Implementation and performance of a GPS/INS tightly coupled assisted PLL architecture using MEMS inertial sensors.

Tawk Y, Tomé P, Botteron C, Stebler Y, Farine PA - Sensors (Basel) (2014)

Position error during Trajectory 1 (left) and Trajectory 2 (right).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3958239&req=5

f29-sensors-14-03768: Position error during Trajectory 1 (left) and Trajectory 2 (right).
Mentions: The position errors of the TCAPLL during Trajectory 1 and Trajectory 2 are shown in Figure 29, in comparison with the stand-alone GPS solution. The performance of the TCAPLL architecture is better, and this is also shown in Tables 6 and 7 where the standard deviation and mean of the velocity, position, and attitude errors are shown for both trajectories. The TCAPLL velocity error is reduced by 88% and 77%, and the position error by 70% and 42%, respectively, for Trajectory 1 and Trajectory 2. The smaller improvement in Trajectory 2 is due to the fact that the measurements were made mainly in good GPS conditions, for which the stand-alone GPS performs relatively well.

Bottom Line: The use of global navigation satellite system receivers for navigation still presents many challenges in urban canyon and indoor environments, where satellite availability is typically reduced and received signals are attenuated.In particular, we propose a GPS/INS Tightly Coupled Assisted PLL (TCAPLL) architecture, and present most of the associated challenges that need to be addressed when dealing with very-low-performance MEMS inertial sensors.Finally, the architecture is evaluated through a test campaign using a vehicle that is driven in urban environments, with the purpose of highlighting the pros and cons of combining MEMS inertial sensors with GPS over GPS alone.

View Article: PubMed Central - PubMed

Affiliation: Polytechnique Fédérale de Lausanne, Institute of Microengineering (IMT), Electronics and Signal Processing Laboratory, Neuchâtel, Switzerland. youssef.tawk@gmail.com.

ABSTRACT
The use of global navigation satellite system receivers for navigation still presents many challenges in urban canyon and indoor environments, where satellite availability is typically reduced and received signals are attenuated. To improve the navigation performance in such environments, several enhancement methods can be implemented. For instance, external aid provided through coupling with other sensors has proven to contribute substantially to enhancing navigation performance and robustness. Within this context, coupling a very simple GPS receiver with an Inertial Navigation System (INS) based on low-cost micro-electro-mechanical systems (MEMS) inertial sensors is considered in this paper. In particular, we propose a GPS/INS Tightly Coupled Assisted PLL (TCAPLL) architecture, and present most of the associated challenges that need to be addressed when dealing with very-low-performance MEMS inertial sensors. In addition, we propose a data monitoring system in charge of checking the quality of the measurement flow in the architecture. The implementation of the TCAPLL is discussed in detail, and its performance under different scenarios is assessed. Finally, the architecture is evaluated through a test campaign using a vehicle that is driven in urban environments, with the purpose of highlighting the pros and cons of combining MEMS inertial sensors with GPS over GPS alone.

No MeSH data available.