Limits...
Patterns of research effort in birds.

Ducatez S, Lefebvre L - PLoS ONE (2014)

Bottom Line: We then test whether research effort is associated with phylogeny, geography and eleven different life history and ecological traits.We show that phylogeny accounts for a large proportion of the variance, while geographic range and all the tested traits are also significant contributors to research effort variance.Our research effort data set covering the entire class Aves provides a tool for researchers to incorporate this potential confounding variable in comparative analyses.

View Article: PubMed Central - PubMed

Affiliation: Department of Biology, McGill University, Montréal, Québec, Canada.

ABSTRACT
Between species differences in research effort can lead to biases in our global view of evolution, ecology and conservation. The increase in meta-taxonomic comparative analyses on birds underlines the need to better address how research effort is distributed in this class. Methods have been developed to choose which species should be studied to obtain unbiased comparative data sets, but a precise and global knowledge of research effort is required to be able to properly apply them. We address this issue by providing a data set of research effort (number of papers from 1978 to 2008 in the Zoological Record database) estimates for the 10,064 species of birds. We then test whether research effort is associated with phylogeny, geography and eleven different life history and ecological traits. We show that phylogeny accounts for a large proportion of the variance, while geographic range and all the tested traits are also significant contributors to research effort variance. We identify avian taxa that are under- and overstudied and address the importance of research effort biases in evaluating vulnerability to extinction, with non-threatened species studied twice as much as threatened ones. Our research effort data set covering the entire class Aves provides a tool for researchers to incorporate this potential confounding variable in comparative analyses.

Show MeSH
a) Relationship between the total number of publications per order and the number of species per order. b) Relationship between the average number of publications per species within each order, and the number of species per order. Orders with low species numbers and low publication number per species are identified for information (see Table 2 for details on each order).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3935962&req=5

pone-0089955-g002: a) Relationship between the total number of publications per order and the number of species per order. b) Relationship between the average number of publications per species within each order, and the number of species per order. Orders with low species numbers and low publication number per species are identified for information (see Table 2 for details on each order).

Mentions: As order explains the largest part of the variance in species level research effort, we investigated in more detail how research effort was distributed at that taxonomic level. The number of publications per order, number of species per order and average number of publications per species within each order are given in Table 2 (see also Figure S1). The total number of publications per order increased with order diversity (Spearman rho = 0.687; p<0.001), even if some orders with high species numbers were studied relatively rarely, such as Apodiformes, Piciformes, Psittaciformes and Columbiformes (see Figure 2a). At the level of species within orders, however, we found a negative relationship that reached borderline significance: species from smaller orders tended to have a higher mean research effort than species from larger orders (Spearman rho between the number of species per order and the average number of publications per species within each order = −0.354, p = 0.055, Figure 2b). Species from small orders such as the Gaviiformes (5 species) and the Sphenisciformes (18 species) had particularly high research effort (Table 2), while Trogoniformes, Tinamiformes and Coliiformes were understudied (see Figure 2b and Table 2).


Patterns of research effort in birds.

Ducatez S, Lefebvre L - PLoS ONE (2014)

a) Relationship between the total number of publications per order and the number of species per order. b) Relationship between the average number of publications per species within each order, and the number of species per order. Orders with low species numbers and low publication number per species are identified for information (see Table 2 for details on each order).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3935962&req=5

pone-0089955-g002: a) Relationship between the total number of publications per order and the number of species per order. b) Relationship between the average number of publications per species within each order, and the number of species per order. Orders with low species numbers and low publication number per species are identified for information (see Table 2 for details on each order).
Mentions: As order explains the largest part of the variance in species level research effort, we investigated in more detail how research effort was distributed at that taxonomic level. The number of publications per order, number of species per order and average number of publications per species within each order are given in Table 2 (see also Figure S1). The total number of publications per order increased with order diversity (Spearman rho = 0.687; p<0.001), even if some orders with high species numbers were studied relatively rarely, such as Apodiformes, Piciformes, Psittaciformes and Columbiformes (see Figure 2a). At the level of species within orders, however, we found a negative relationship that reached borderline significance: species from smaller orders tended to have a higher mean research effort than species from larger orders (Spearman rho between the number of species per order and the average number of publications per species within each order = −0.354, p = 0.055, Figure 2b). Species from small orders such as the Gaviiformes (5 species) and the Sphenisciformes (18 species) had particularly high research effort (Table 2), while Trogoniformes, Tinamiformes and Coliiformes were understudied (see Figure 2b and Table 2).

Bottom Line: We then test whether research effort is associated with phylogeny, geography and eleven different life history and ecological traits.We show that phylogeny accounts for a large proportion of the variance, while geographic range and all the tested traits are also significant contributors to research effort variance.Our research effort data set covering the entire class Aves provides a tool for researchers to incorporate this potential confounding variable in comparative analyses.

View Article: PubMed Central - PubMed

Affiliation: Department of Biology, McGill University, Montréal, Québec, Canada.

ABSTRACT
Between species differences in research effort can lead to biases in our global view of evolution, ecology and conservation. The increase in meta-taxonomic comparative analyses on birds underlines the need to better address how research effort is distributed in this class. Methods have been developed to choose which species should be studied to obtain unbiased comparative data sets, but a precise and global knowledge of research effort is required to be able to properly apply them. We address this issue by providing a data set of research effort (number of papers from 1978 to 2008 in the Zoological Record database) estimates for the 10,064 species of birds. We then test whether research effort is associated with phylogeny, geography and eleven different life history and ecological traits. We show that phylogeny accounts for a large proportion of the variance, while geographic range and all the tested traits are also significant contributors to research effort variance. We identify avian taxa that are under- and overstudied and address the importance of research effort biases in evaluating vulnerability to extinction, with non-threatened species studied twice as much as threatened ones. Our research effort data set covering the entire class Aves provides a tool for researchers to incorporate this potential confounding variable in comparative analyses.

Show MeSH