Limits...
Concurrent sensorimotor temporal recalibration to different lags for the left and right hand.

Sugano Y, Keetels M, Vroomen J - Front Psychol (2014)

Bottom Line: Different amounts of TR were found when the left and right hand were concurrently exposed to the same versus different delays.With different exposure- delays for the two hands, there was a TR even for the hand that did not experience any delay in the feedback signal.These results suggest the existence of cross-talk between the hands, where both central and motor-specific components might be involved.

View Article: PubMed Central - PubMed

Affiliation: Department of Industrial Management, Kyushu Sangyo University Fukuoka, Japan.

ABSTRACT
Perception of temporal synchrony between one's own action and the sensory feedback of that action is quite flexible. We examined whether sensorimotor temporal recalibration (TR) involves central or motor-specific components by concurrently exposing the left and right hands to different lags. The experiment was composed of a pre-test, an adaptation phase, and a post-test. During the adaptation phase, participants tapped their left and right index fingers in alternating fashion while each tap induced an auditory feedback signal (a short click sound). One hand was exposed to a long delay between the tap and the sound (~150 ms), while the other hand was exposed to a subjective no-delay (~50 ms). Before and after the adaptation phase (the pre- and post-test), participants tried to tap in synchrony with pacer tones (ISI = 1000 ms). The results showed that the hand that was exposed to the delayed sound corrected for this delay by tapping earlier (a larger anticipation error) than the no-delay hand, indicating TR. Different amounts of TR were found when the left and right hand were concurrently exposed to the same versus different delays. With different exposure- delays for the two hands, there was a TR even for the hand that did not experience any delay in the feedback signal. However, it is not the case with the same exposure delay for the two hands. TR of the hand that experienced delayed feedback also occurred faster and was more complete (~40% greater than that of the hand with no subjective delay) if the two hands were exposed to the same rather than different delays (~20% greater than that of the hand with no subjective delay). These results suggest the existence of cross-talk between the hands, where both central and motor-specific components might be involved.

No MeSH data available.


Related in: MedlinePlus

Mean tap asynchronies per tap. (A) The mixed-exposure condition. (B) The pure-exposure condition. They were re-calculated from the same data as shown in Figure 3. Data of the first tap-position were omitted due to instability. A negative tap-asynchrony means that the tap comes before the tone (i.e., an anticipation error). Error bars represent 1 standard error of mean (SEM).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3934310&req=5

Figure 4: Mean tap asynchronies per tap. (A) The mixed-exposure condition. (B) The pure-exposure condition. They were re-calculated from the same data as shown in Figure 3. Data of the first tap-position were omitted due to instability. A negative tap-asynchrony means that the tap comes before the tone (i.e., an anticipation error). Error bars represent 1 standard error of mean (SEM).

Mentions: To examine if there was dissipation of TR, mean tap asynchronies for each tap within a trial were calculated. The mean tap asynchronies across hands for the 2nd until the 7th tap (1st tap was omitted from the analysis as mentioned before) are shown in Figure 4. As is clearly visible, although the tap asynchronies in the post-test became more negative as the number of taps increase, the difference between the delayed and the non-delayed conditions remained constant in all taps. To confirm this, mean tap asynchronies per tap were entered into a repeated-measures or mixed-model ANOVA per exposure type (mixed- vs. pure-exposure) and test type (pre- vs. post-test), with tap position (2nd to 7th tap) as a within-subjects factor and exposure delay (50 vs. 150 ms) either as a within-subjects (mixed-exposure) or a between-subjects factor (pure-exposure). As expected and shown in Figure 4, these ANOVAs revealed a significant main effect of tap position (in the pre- and post-test) and exposure lag (in the post-test only) under both exposure types (all ps < 0.05). Most importantly, the tap position did not interact with exposure delay in either exposure type in the post-test, F(5,130) = 1.71, p = 0.14, in mixed-exposure and F(5,115) = 0.84, p = 0.53, in pure-exposure, indicating that the TRE did not dissipate within the short term period of one trial (~14 s).


Concurrent sensorimotor temporal recalibration to different lags for the left and right hand.

Sugano Y, Keetels M, Vroomen J - Front Psychol (2014)

Mean tap asynchronies per tap. (A) The mixed-exposure condition. (B) The pure-exposure condition. They were re-calculated from the same data as shown in Figure 3. Data of the first tap-position were omitted due to instability. A negative tap-asynchrony means that the tap comes before the tone (i.e., an anticipation error). Error bars represent 1 standard error of mean (SEM).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3934310&req=5

Figure 4: Mean tap asynchronies per tap. (A) The mixed-exposure condition. (B) The pure-exposure condition. They were re-calculated from the same data as shown in Figure 3. Data of the first tap-position were omitted due to instability. A negative tap-asynchrony means that the tap comes before the tone (i.e., an anticipation error). Error bars represent 1 standard error of mean (SEM).
Mentions: To examine if there was dissipation of TR, mean tap asynchronies for each tap within a trial were calculated. The mean tap asynchronies across hands for the 2nd until the 7th tap (1st tap was omitted from the analysis as mentioned before) are shown in Figure 4. As is clearly visible, although the tap asynchronies in the post-test became more negative as the number of taps increase, the difference between the delayed and the non-delayed conditions remained constant in all taps. To confirm this, mean tap asynchronies per tap were entered into a repeated-measures or mixed-model ANOVA per exposure type (mixed- vs. pure-exposure) and test type (pre- vs. post-test), with tap position (2nd to 7th tap) as a within-subjects factor and exposure delay (50 vs. 150 ms) either as a within-subjects (mixed-exposure) or a between-subjects factor (pure-exposure). As expected and shown in Figure 4, these ANOVAs revealed a significant main effect of tap position (in the pre- and post-test) and exposure lag (in the post-test only) under both exposure types (all ps < 0.05). Most importantly, the tap position did not interact with exposure delay in either exposure type in the post-test, F(5,130) = 1.71, p = 0.14, in mixed-exposure and F(5,115) = 0.84, p = 0.53, in pure-exposure, indicating that the TRE did not dissipate within the short term period of one trial (~14 s).

Bottom Line: Different amounts of TR were found when the left and right hand were concurrently exposed to the same versus different delays.With different exposure- delays for the two hands, there was a TR even for the hand that did not experience any delay in the feedback signal.These results suggest the existence of cross-talk between the hands, where both central and motor-specific components might be involved.

View Article: PubMed Central - PubMed

Affiliation: Department of Industrial Management, Kyushu Sangyo University Fukuoka, Japan.

ABSTRACT
Perception of temporal synchrony between one's own action and the sensory feedback of that action is quite flexible. We examined whether sensorimotor temporal recalibration (TR) involves central or motor-specific components by concurrently exposing the left and right hands to different lags. The experiment was composed of a pre-test, an adaptation phase, and a post-test. During the adaptation phase, participants tapped their left and right index fingers in alternating fashion while each tap induced an auditory feedback signal (a short click sound). One hand was exposed to a long delay between the tap and the sound (~150 ms), while the other hand was exposed to a subjective no-delay (~50 ms). Before and after the adaptation phase (the pre- and post-test), participants tried to tap in synchrony with pacer tones (ISI = 1000 ms). The results showed that the hand that was exposed to the delayed sound corrected for this delay by tapping earlier (a larger anticipation error) than the no-delay hand, indicating TR. Different amounts of TR were found when the left and right hand were concurrently exposed to the same versus different delays. With different exposure- delays for the two hands, there was a TR even for the hand that did not experience any delay in the feedback signal. However, it is not the case with the same exposure delay for the two hands. TR of the hand that experienced delayed feedback also occurred faster and was more complete (~40% greater than that of the hand with no subjective delay) if the two hands were exposed to the same rather than different delays (~20% greater than that of the hand with no subjective delay). These results suggest the existence of cross-talk between the hands, where both central and motor-specific components might be involved.

No MeSH data available.


Related in: MedlinePlus