Limits...
Virgin olive oil blended polyurethane micro/nanofibers ornamented with copper oxide nanocrystals for biomedical applications.

Amna T, Hassan MS, Yang J, Khil MS, Song KD, Oh JD, Hwang I - Int J Nanomedicine (2014)

Bottom Line: The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay results and SEM observation showed that the hybrid micronanofibrous scaffold was noncytotoxic to fibroblast cell culture and was found to benefit cell attachment and proliferation.Copper oxide-olive oil/PU wound dressing may exert its positive beneficial effects at every stage during wound-healing progression, and these micronanofibers may serve diverse biomedical applications, such as tissue regeneration, damaged skin treatment, wound healing applications, etc.Conclusively, the fabricated olive oil-copper oxide/PU micronanofibers combine the benefits of virgin olive oil and copper oxide, and therefore hold great promise for biomedical applications in the near future.

View Article: PubMed Central - PubMed

Affiliation: Department of Animal Sciences and Biotechnology, Jeonju, South Korea.

ABSTRACT
Recently, substantial interest has been generated in using electrospun biomimetic nanofibers of hybrids, particularly organic/inorganic, to engineer different tissues. The present work, for the first time, introduced a unique natural and synthetic hybrid micronanofiber wound dressing, composed of virgin olive oil/copper oxide nanocrystals and polyurethane (PU), developed via facile electrospinning. The as-spun organic/inorganic hybrid micronanofibers were characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis, X-ray diffraction, electron probe microanalysis, and transmission electron microscopy. The interaction of cells with scaffold was studied by culturing NIH 3T3 fibroblasts on an as-spun hybrid micronanofibrous mat, and viability, proliferation, and growth were assessed. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay results and SEM observation showed that the hybrid micronanofibrous scaffold was noncytotoxic to fibroblast cell culture and was found to benefit cell attachment and proliferation. Hence our results suggest the potential utilization of as-spun micronanoscaffolds for tissue engineering. Copper oxide-olive oil/PU wound dressing may exert its positive beneficial effects at every stage during wound-healing progression, and these micronanofibers may serve diverse biomedical applications, such as tissue regeneration, damaged skin treatment, wound healing applications, etc. Conclusively, the fabricated olive oil-copper oxide/PU micronanofibers combine the benefits of virgin olive oil and copper oxide, and therefore hold great promise for biomedical applications in the near future.

Show MeSH

Related in: MedlinePlus

SEM images of pristine PU (A), olive oil (10 wt%)/PU blend micronanofibers (B), and olive oil (5 wt%)/CuO–PU micronanofibers at different magnifications (C and D).Abbreviations: CuO, copper oxide; PU, polyurethane; SEM, scanning electron microscopy.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3928461&req=5

f2-ijn-9-891: SEM images of pristine PU (A), olive oil (10 wt%)/PU blend micronanofibers (B), and olive oil (5 wt%)/CuO–PU micronanofibers at different magnifications (C and D).Abbreviations: CuO, copper oxide; PU, polyurethane; SEM, scanning electron microscopy.

Mentions: Figure 1 represents the digital images of pristine and composite micronanofibrous mats. The color of the mat has been changed from white to mustard color, which is preliminary evidence of integration of olive oil and CuO nanocrystals with PU. Figure 2 shows the SEM micrographs of the plain PU, virgin olive oil blended PU, and olive oil/CuO–PU hybrid micronanofibers. Electrospinning of pristine PU solutions yielded nanofibers with 250–550 nm (±10 nm) diameter demonstrated in Figure 2A. Undoped PU nanofibers were bead-free, with even surfaces (Figure 2B). Conversely, the nanofibers obtained from olive oil doping (5%) in PU were comparatively beaded (Figure 2B). Furthermore, it was also observed that the merging of olive oil and CuO nanocrystals in PU yielded micronanofibers which ranged from 0.15–1.5 μm in diameter, with fused morphology (at certain positions) and enhanced mechanical strength (Figure 2C and D). The optimal concentration of olive oil for spinning was found to be approximately 5%, and the interaction of olive oil with PU resulted in hybrid fiber morphology (micronanofibers) (Figure 2B–D), which further confirmed the even distribution of oil and CuO in PU. Figure 3 represents the chemical composition of hybrid micronanofibers. The successful blending of CuO nanocrystals and olive oil with PU fibers was confirmed by electron probe microanalysis, which demonstrated consistent dispersion of carbon, oxygen, and copper elements in hybrid mat. Figure 4A shows transmission electron micro scopy (TEM) of the hybrid mat. The TEM image demonstrates that the hybrid fibers contain beaded morphology due to the presence of olive oil and CuO nanocrystals. The particle size of CuO nanocrystals was ~6.0±0.5 nm (inset Figure 4A), and these tiny CuO nanocrystals were supposed to be present inside the fibers making the core shell structure. Figure 4B shows the EDX analysis of hybrid micronanofibers. As revealed by the figure, the fibers composed of carbon, oxygen, and copper are without impurities. Also, the line mapping of the fibers shows the signals of these elements, which again confirms their presence in the composite (inset Figure 4B).


Virgin olive oil blended polyurethane micro/nanofibers ornamented with copper oxide nanocrystals for biomedical applications.

Amna T, Hassan MS, Yang J, Khil MS, Song KD, Oh JD, Hwang I - Int J Nanomedicine (2014)

SEM images of pristine PU (A), olive oil (10 wt%)/PU blend micronanofibers (B), and olive oil (5 wt%)/CuO–PU micronanofibers at different magnifications (C and D).Abbreviations: CuO, copper oxide; PU, polyurethane; SEM, scanning electron microscopy.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3928461&req=5

f2-ijn-9-891: SEM images of pristine PU (A), olive oil (10 wt%)/PU blend micronanofibers (B), and olive oil (5 wt%)/CuO–PU micronanofibers at different magnifications (C and D).Abbreviations: CuO, copper oxide; PU, polyurethane; SEM, scanning electron microscopy.
Mentions: Figure 1 represents the digital images of pristine and composite micronanofibrous mats. The color of the mat has been changed from white to mustard color, which is preliminary evidence of integration of olive oil and CuO nanocrystals with PU. Figure 2 shows the SEM micrographs of the plain PU, virgin olive oil blended PU, and olive oil/CuO–PU hybrid micronanofibers. Electrospinning of pristine PU solutions yielded nanofibers with 250–550 nm (±10 nm) diameter demonstrated in Figure 2A. Undoped PU nanofibers were bead-free, with even surfaces (Figure 2B). Conversely, the nanofibers obtained from olive oil doping (5%) in PU were comparatively beaded (Figure 2B). Furthermore, it was also observed that the merging of olive oil and CuO nanocrystals in PU yielded micronanofibers which ranged from 0.15–1.5 μm in diameter, with fused morphology (at certain positions) and enhanced mechanical strength (Figure 2C and D). The optimal concentration of olive oil for spinning was found to be approximately 5%, and the interaction of olive oil with PU resulted in hybrid fiber morphology (micronanofibers) (Figure 2B–D), which further confirmed the even distribution of oil and CuO in PU. Figure 3 represents the chemical composition of hybrid micronanofibers. The successful blending of CuO nanocrystals and olive oil with PU fibers was confirmed by electron probe microanalysis, which demonstrated consistent dispersion of carbon, oxygen, and copper elements in hybrid mat. Figure 4A shows transmission electron micro scopy (TEM) of the hybrid mat. The TEM image demonstrates that the hybrid fibers contain beaded morphology due to the presence of olive oil and CuO nanocrystals. The particle size of CuO nanocrystals was ~6.0±0.5 nm (inset Figure 4A), and these tiny CuO nanocrystals were supposed to be present inside the fibers making the core shell structure. Figure 4B shows the EDX analysis of hybrid micronanofibers. As revealed by the figure, the fibers composed of carbon, oxygen, and copper are without impurities. Also, the line mapping of the fibers shows the signals of these elements, which again confirms their presence in the composite (inset Figure 4B).

Bottom Line: The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay results and SEM observation showed that the hybrid micronanofibrous scaffold was noncytotoxic to fibroblast cell culture and was found to benefit cell attachment and proliferation.Copper oxide-olive oil/PU wound dressing may exert its positive beneficial effects at every stage during wound-healing progression, and these micronanofibers may serve diverse biomedical applications, such as tissue regeneration, damaged skin treatment, wound healing applications, etc.Conclusively, the fabricated olive oil-copper oxide/PU micronanofibers combine the benefits of virgin olive oil and copper oxide, and therefore hold great promise for biomedical applications in the near future.

View Article: PubMed Central - PubMed

Affiliation: Department of Animal Sciences and Biotechnology, Jeonju, South Korea.

ABSTRACT
Recently, substantial interest has been generated in using electrospun biomimetic nanofibers of hybrids, particularly organic/inorganic, to engineer different tissues. The present work, for the first time, introduced a unique natural and synthetic hybrid micronanofiber wound dressing, composed of virgin olive oil/copper oxide nanocrystals and polyurethane (PU), developed via facile electrospinning. The as-spun organic/inorganic hybrid micronanofibers were characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis, X-ray diffraction, electron probe microanalysis, and transmission electron microscopy. The interaction of cells with scaffold was studied by culturing NIH 3T3 fibroblasts on an as-spun hybrid micronanofibrous mat, and viability, proliferation, and growth were assessed. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay results and SEM observation showed that the hybrid micronanofibrous scaffold was noncytotoxic to fibroblast cell culture and was found to benefit cell attachment and proliferation. Hence our results suggest the potential utilization of as-spun micronanoscaffolds for tissue engineering. Copper oxide-olive oil/PU wound dressing may exert its positive beneficial effects at every stage during wound-healing progression, and these micronanofibers may serve diverse biomedical applications, such as tissue regeneration, damaged skin treatment, wound healing applications, etc. Conclusively, the fabricated olive oil-copper oxide/PU micronanofibers combine the benefits of virgin olive oil and copper oxide, and therefore hold great promise for biomedical applications in the near future.

Show MeSH
Related in: MedlinePlus