Limits...
Genetic structure and natal origins of immature hawksbill turtles (Eretmochelys imbricata) in Brazilian waters.

Proietti MC, Reisser J, Marins LF, Rodriguez-Zarate C, Marcovaldi MA, Monteiro DS, Pattiaratchi C, Secchi ER - PLoS ONE (2014)

Bottom Line: Understanding the connections between sea turtle populations is fundamental for their effective conservation.Genetic profiles of Brazilian feeding areas were significantly different from those in other regions (Caribbean and Africa), and a significant structure was observed between Brazilian feeding grounds grouped into areas influenced by the South Equatorial/North Brazil Current and those influenced by the Brazil Current.The information presented here highlights the importance of national conservation strategies and international cooperation for the recovery of endangered hawksbill turtle populations.

View Article: PubMed Central - PubMed

Affiliation: Instituto de Oceanografia, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil.

ABSTRACT
Understanding the connections between sea turtle populations is fundamental for their effective conservation. Brazil hosts important hawksbill feeding areas, but few studies have focused on how they connect with nesting populations in the Atlantic. Here, we (1) characterized mitochondrial DNA control region haplotypes of immature hawksbills feeding along the coast of Brazil (five areas ranging from equatorial to temperate latitudes, 157 skin samples), (2) analyzed genetic structure among Atlantic hawksbill feeding populations, and (3) inferred natal origins of hawksbills in Brazilian waters using genetic, oceanographic, and population size information. We report ten haplotypes for the sampled Brazilian sites, most of which were previously observed at other Atlantic feeding grounds and rookeries. Genetic profiles of Brazilian feeding areas were significantly different from those in other regions (Caribbean and Africa), and a significant structure was observed between Brazilian feeding grounds grouped into areas influenced by the South Equatorial/North Brazil Current and those influenced by the Brazil Current. Our genetic analysis estimates that the studied Brazilian feeding aggregations are mostly composed of animals originating from the domestic rookeries Bahia and Pipa, but some contributions from African and Caribbean rookeries were also observed. Oceanographic data corroborated the local origins, but showed higher connection with West Africa and none with the Caribbean. High correlation was observed between origins estimated through genetics/rookery size and oceanographic/rookery size data, demonstrating that ocean currents and population sizes influence haplotype distribution of Brazil's hawksbill populations. The information presented here highlights the importance of national conservation strategies and international cooperation for the recovery of endangered hawksbill turtle populations.

Show MeSH
Pathways of drifters passing by Atlantic Ocean rookeries Bahia (a.), Pipa (b.) and Principe (c.).Drifter pathways for the other Atlantic rookeries are shown in Figure S3. Colors indicate drift time (in months). Grey squares  =  drifter release areas around the rookeries, red circles  =  Brazilian feeding grounds, grey circles  =  other Atlantic Ocean feeding grounds. Grey arrows indicate the flow of the major Atlantic Ocean currents: SE =  South Equatorial Current, BR =  Brazil Current, SA =  South Atlantic Current (displaced to the North for illustrative purposes), BG =  Benguela Current, NB =  North Brazil Current, GU =  Guiana Current, CB =  Caribbean Current, EC =  Equatorial Counter Current, NE =  North Equatorial Current, GS =  Gulf Stream, NA =  North Atlantic Current, CN =  Canary Current.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3928279&req=5

pone-0088746-g004: Pathways of drifters passing by Atlantic Ocean rookeries Bahia (a.), Pipa (b.) and Principe (c.).Drifter pathways for the other Atlantic rookeries are shown in Figure S3. Colors indicate drift time (in months). Grey squares  =  drifter release areas around the rookeries, red circles  =  Brazilian feeding grounds, grey circles  =  other Atlantic Ocean feeding grounds. Grey arrows indicate the flow of the major Atlantic Ocean currents: SE =  South Equatorial Current, BR =  Brazil Current, SA =  South Atlantic Current (displaced to the North for illustrative purposes), BG =  Benguela Current, NB =  North Brazil Current, GU =  Guiana Current, CB =  Caribbean Current, EC =  Equatorial Counter Current, NE =  North Equatorial Current, GS =  Gulf Stream, NA =  North Atlantic Current, CN =  Canary Current.

Mentions: Of the available drifter data, a total of 469 drifters passed through the Atlantic rookeries, of which 388 transmitted for over three months. Of these, 37 drifters arrived at our three target areas in Brazil, originating from the Bahia, Pipa and Principe rookeries (trajectories shown in Figure 4). Displacements from rookeries to Brazilian feeding areas were most likely by means of the North Brazil Current for drifters leaving the Pipa rookery, North Brazil/Brazil Current for those leaving Bahia, and South Equatorial Current for drifters from Principe. No drifters from the Caribbean arrived at the Brazilian coastline (see Figure S3). When estimating natal origins of hawksbills at our target areas through drifter/population size data, significant contributions were: Pipa (58%), Bahia (9%) and Cuba (11%) for SPSP; Pipa (62%), Bahia (14%) and Cuba (10%) for Noronha/Ceará; and Bahia (72%) for Abrolhos/Bahia/South Brazil (Table 4). Correlation between natal origins as calculated by MSA (which included genetic/rookery size data) and drifters/rookery size information was significant (Mantel test, r = 0.791, p<0.05; linear regression r = 0.560, p<0.01; Figure 5).


Genetic structure and natal origins of immature hawksbill turtles (Eretmochelys imbricata) in Brazilian waters.

Proietti MC, Reisser J, Marins LF, Rodriguez-Zarate C, Marcovaldi MA, Monteiro DS, Pattiaratchi C, Secchi ER - PLoS ONE (2014)

Pathways of drifters passing by Atlantic Ocean rookeries Bahia (a.), Pipa (b.) and Principe (c.).Drifter pathways for the other Atlantic rookeries are shown in Figure S3. Colors indicate drift time (in months). Grey squares  =  drifter release areas around the rookeries, red circles  =  Brazilian feeding grounds, grey circles  =  other Atlantic Ocean feeding grounds. Grey arrows indicate the flow of the major Atlantic Ocean currents: SE =  South Equatorial Current, BR =  Brazil Current, SA =  South Atlantic Current (displaced to the North for illustrative purposes), BG =  Benguela Current, NB =  North Brazil Current, GU =  Guiana Current, CB =  Caribbean Current, EC =  Equatorial Counter Current, NE =  North Equatorial Current, GS =  Gulf Stream, NA =  North Atlantic Current, CN =  Canary Current.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3928279&req=5

pone-0088746-g004: Pathways of drifters passing by Atlantic Ocean rookeries Bahia (a.), Pipa (b.) and Principe (c.).Drifter pathways for the other Atlantic rookeries are shown in Figure S3. Colors indicate drift time (in months). Grey squares  =  drifter release areas around the rookeries, red circles  =  Brazilian feeding grounds, grey circles  =  other Atlantic Ocean feeding grounds. Grey arrows indicate the flow of the major Atlantic Ocean currents: SE =  South Equatorial Current, BR =  Brazil Current, SA =  South Atlantic Current (displaced to the North for illustrative purposes), BG =  Benguela Current, NB =  North Brazil Current, GU =  Guiana Current, CB =  Caribbean Current, EC =  Equatorial Counter Current, NE =  North Equatorial Current, GS =  Gulf Stream, NA =  North Atlantic Current, CN =  Canary Current.
Mentions: Of the available drifter data, a total of 469 drifters passed through the Atlantic rookeries, of which 388 transmitted for over three months. Of these, 37 drifters arrived at our three target areas in Brazil, originating from the Bahia, Pipa and Principe rookeries (trajectories shown in Figure 4). Displacements from rookeries to Brazilian feeding areas were most likely by means of the North Brazil Current for drifters leaving the Pipa rookery, North Brazil/Brazil Current for those leaving Bahia, and South Equatorial Current for drifters from Principe. No drifters from the Caribbean arrived at the Brazilian coastline (see Figure S3). When estimating natal origins of hawksbills at our target areas through drifter/population size data, significant contributions were: Pipa (58%), Bahia (9%) and Cuba (11%) for SPSP; Pipa (62%), Bahia (14%) and Cuba (10%) for Noronha/Ceará; and Bahia (72%) for Abrolhos/Bahia/South Brazil (Table 4). Correlation between natal origins as calculated by MSA (which included genetic/rookery size data) and drifters/rookery size information was significant (Mantel test, r = 0.791, p<0.05; linear regression r = 0.560, p<0.01; Figure 5).

Bottom Line: Understanding the connections between sea turtle populations is fundamental for their effective conservation.Genetic profiles of Brazilian feeding areas were significantly different from those in other regions (Caribbean and Africa), and a significant structure was observed between Brazilian feeding grounds grouped into areas influenced by the South Equatorial/North Brazil Current and those influenced by the Brazil Current.The information presented here highlights the importance of national conservation strategies and international cooperation for the recovery of endangered hawksbill turtle populations.

View Article: PubMed Central - PubMed

Affiliation: Instituto de Oceanografia, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil.

ABSTRACT
Understanding the connections between sea turtle populations is fundamental for their effective conservation. Brazil hosts important hawksbill feeding areas, but few studies have focused on how they connect with nesting populations in the Atlantic. Here, we (1) characterized mitochondrial DNA control region haplotypes of immature hawksbills feeding along the coast of Brazil (five areas ranging from equatorial to temperate latitudes, 157 skin samples), (2) analyzed genetic structure among Atlantic hawksbill feeding populations, and (3) inferred natal origins of hawksbills in Brazilian waters using genetic, oceanographic, and population size information. We report ten haplotypes for the sampled Brazilian sites, most of which were previously observed at other Atlantic feeding grounds and rookeries. Genetic profiles of Brazilian feeding areas were significantly different from those in other regions (Caribbean and Africa), and a significant structure was observed between Brazilian feeding grounds grouped into areas influenced by the South Equatorial/North Brazil Current and those influenced by the Brazil Current. Our genetic analysis estimates that the studied Brazilian feeding aggregations are mostly composed of animals originating from the domestic rookeries Bahia and Pipa, but some contributions from African and Caribbean rookeries were also observed. Oceanographic data corroborated the local origins, but showed higher connection with West Africa and none with the Caribbean. High correlation was observed between origins estimated through genetics/rookery size and oceanographic/rookery size data, demonstrating that ocean currents and population sizes influence haplotype distribution of Brazil's hawksbill populations. The information presented here highlights the importance of national conservation strategies and international cooperation for the recovery of endangered hawksbill turtle populations.

Show MeSH