Limits...
Effect of cardiovascular prevention strategies on incident coronary disease hospitalisation rates in Spain; an ecological time series analysis.

Medrano MJ, Alcalde-Cabero E, Ortíz C, Galán I - BMJ Open (2014)

Bottom Line: Hospitalisation rates increased from 1982 to 1996, with an inflection point in 1997 and a subsequent 52% decrease until 2009.Prevalences of smoking, obesity, overweight and use of vascular risk drug therapy were significantly associated with hospitalisation rates (p<0.001): incidence rates ratios (95% CI) for the fourth versus the first quartile were 1.46 (1.42 to 1.50), 1.80 (1.78 to 1.83), 1.58 (1.55 to 1.60) and 0.57 (0.51 to 0.63), respectively.After decades of continuous rises, hospitalisation due to incident ischaemic heart disease has been cut by half, an achievement associated with the decline in smoking and the increase in vascular risk drug therapy.

View Article: PubMed Central - PubMed

Affiliation: National Centre for Epidemiology, Carlos III Institute of Health, Madrid, Spain.

ABSTRACT

Objective: To assess the overall population impact of primary prevention strategies (promotion of healthy lifestyles, prevention of smoking and use of vascular risk drug therapy) of coronary disease in Spain.

Design: Ecological time series analysis, 1982-2009.

Setting: All public and private hospitals in Spain.

Participants: General population.

Outcome: Incident coronary disease hospitalisation as derived from official hospital discharge data.

Methods: Annual hospitalisation rates were modelled according to nationwide use of statins, antihypertensive, antidiabetic and antiplatelet drugs, and prevalences of smoking, obesity and overweight. Additive generalised models and mixed Poisson regression models were used for the purpose, taking year as the random-effect variable and adjusting for age, sex, prevalence of vascular risk factors and the number of hospital beds in intensive and coronary care units.

Results: Across 28 years and 671.5 million person-years of observation, there were 2 986 834 hospitalisations due to coronary disease; of these, 1 441 980 (48.28%) were classified as incident. Hospitalisation rates increased from 1982 to 1996, with an inflection point in 1997 and a subsequent 52% decrease until 2009. Prevalences of smoking, obesity, overweight and use of vascular risk drug therapy were significantly associated with hospitalisation rates (p<0.001): incidence rates ratios (95% CI) for the fourth versus the first quartile were 1.46 (1.42 to 1.50), 1.80 (1.78 to 1.83), 1.58 (1.55 to 1.60) and 0.57 (0.51 to 0.63), respectively. These variables accounted for 92% of interannual variability.

Conclusions: After decades of continuous rises, hospitalisation due to incident ischaemic heart disease has been cut by half, an achievement associated with the decline in smoking and the increase in vascular risk drug therapy. These results indicate that these two primary prevention strategies have been effective at a population level, thanks to an appropriate balance between financial and health goals, something that should be left intact despite the current economic crisis. Future strategies ought to lay special stress on excessive body weight prevention.

No MeSH data available.


Related in: MedlinePlus

Time series of incidence analysed using non-parametric generalised additive models. Left plot: smoothed series adjusted for age and sex. Right plot: smoothed series adjusted for age, sex, prevalence of smoking, obesity and overweight, and use of cardiovascular disease prevention drug therapy. Solid lines represent the incidence rate ratios (IRRs) and dashed lines are the upper and lower limits of its 95% CI.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3927998&req=5

BMJOPEN2013004257F2: Time series of incidence analysed using non-parametric generalised additive models. Left plot: smoothed series adjusted for age and sex. Right plot: smoothed series adjusted for age, sex, prevalence of smoking, obesity and overweight, and use of cardiovascular disease prevention drug therapy. Solid lines represent the incidence rate ratios (IRRs) and dashed lines are the upper and lower limits of its 95% CI.

Mentions: Finally, figure 2 describes the time series of incidence analysed using Poisson non-parametric generalised additive models. The left plot displays the downward trend in the annual age-adjusted and sex-adjusted incidence rates, which shows very narrow CI because of the very large size of the study population. This downward trend disappeared after additionally adjusting for the four explanatory variables (figure 2, right plot), which shows that the decrease was due to the effect of these same variables. From 2004 onwards, however, the declining trend remained in evidence even after adjustment was made for use of preventive drug therapy and prevalence of smoking, obesity and overweight.


Effect of cardiovascular prevention strategies on incident coronary disease hospitalisation rates in Spain; an ecological time series analysis.

Medrano MJ, Alcalde-Cabero E, Ortíz C, Galán I - BMJ Open (2014)

Time series of incidence analysed using non-parametric generalised additive models. Left plot: smoothed series adjusted for age and sex. Right plot: smoothed series adjusted for age, sex, prevalence of smoking, obesity and overweight, and use of cardiovascular disease prevention drug therapy. Solid lines represent the incidence rate ratios (IRRs) and dashed lines are the upper and lower limits of its 95% CI.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3927998&req=5

BMJOPEN2013004257F2: Time series of incidence analysed using non-parametric generalised additive models. Left plot: smoothed series adjusted for age and sex. Right plot: smoothed series adjusted for age, sex, prevalence of smoking, obesity and overweight, and use of cardiovascular disease prevention drug therapy. Solid lines represent the incidence rate ratios (IRRs) and dashed lines are the upper and lower limits of its 95% CI.
Mentions: Finally, figure 2 describes the time series of incidence analysed using Poisson non-parametric generalised additive models. The left plot displays the downward trend in the annual age-adjusted and sex-adjusted incidence rates, which shows very narrow CI because of the very large size of the study population. This downward trend disappeared after additionally adjusting for the four explanatory variables (figure 2, right plot), which shows that the decrease was due to the effect of these same variables. From 2004 onwards, however, the declining trend remained in evidence even after adjustment was made for use of preventive drug therapy and prevalence of smoking, obesity and overweight.

Bottom Line: Hospitalisation rates increased from 1982 to 1996, with an inflection point in 1997 and a subsequent 52% decrease until 2009.Prevalences of smoking, obesity, overweight and use of vascular risk drug therapy were significantly associated with hospitalisation rates (p<0.001): incidence rates ratios (95% CI) for the fourth versus the first quartile were 1.46 (1.42 to 1.50), 1.80 (1.78 to 1.83), 1.58 (1.55 to 1.60) and 0.57 (0.51 to 0.63), respectively.After decades of continuous rises, hospitalisation due to incident ischaemic heart disease has been cut by half, an achievement associated with the decline in smoking and the increase in vascular risk drug therapy.

View Article: PubMed Central - PubMed

Affiliation: National Centre for Epidemiology, Carlos III Institute of Health, Madrid, Spain.

ABSTRACT

Objective: To assess the overall population impact of primary prevention strategies (promotion of healthy lifestyles, prevention of smoking and use of vascular risk drug therapy) of coronary disease in Spain.

Design: Ecological time series analysis, 1982-2009.

Setting: All public and private hospitals in Spain.

Participants: General population.

Outcome: Incident coronary disease hospitalisation as derived from official hospital discharge data.

Methods: Annual hospitalisation rates were modelled according to nationwide use of statins, antihypertensive, antidiabetic and antiplatelet drugs, and prevalences of smoking, obesity and overweight. Additive generalised models and mixed Poisson regression models were used for the purpose, taking year as the random-effect variable and adjusting for age, sex, prevalence of vascular risk factors and the number of hospital beds in intensive and coronary care units.

Results: Across 28 years and 671.5 million person-years of observation, there were 2 986 834 hospitalisations due to coronary disease; of these, 1 441 980 (48.28%) were classified as incident. Hospitalisation rates increased from 1982 to 1996, with an inflection point in 1997 and a subsequent 52% decrease until 2009. Prevalences of smoking, obesity, overweight and use of vascular risk drug therapy were significantly associated with hospitalisation rates (p<0.001): incidence rates ratios (95% CI) for the fourth versus the first quartile were 1.46 (1.42 to 1.50), 1.80 (1.78 to 1.83), 1.58 (1.55 to 1.60) and 0.57 (0.51 to 0.63), respectively. These variables accounted for 92% of interannual variability.

Conclusions: After decades of continuous rises, hospitalisation due to incident ischaemic heart disease has been cut by half, an achievement associated with the decline in smoking and the increase in vascular risk drug therapy. These results indicate that these two primary prevention strategies have been effective at a population level, thanks to an appropriate balance between financial and health goals, something that should be left intact despite the current economic crisis. Future strategies ought to lay special stress on excessive body weight prevention.

No MeSH data available.


Related in: MedlinePlus