Limits...
Involvement of Type IV Pili in Pathogenicity of Plant Pathogenic Bacteria.

Burdman S, Bahar O, Parker JK, De La Fuente L - Genes (Basel) (2011)

Bottom Line: Type IV pili (T4P) are hair-like appendages found on the surface of a wide range of bacteria belonging to the β-, γ-, and δ-Proteobacteria, Cyanobacteria and Firmicutes.They constitute an efficient device for a particular type of bacterial surface motility, named twitching, and are involved in several other bacterial activities and functions, including surface adherence, colonization, biofilm formation, genetic material uptake and virulence.Only in recent years studies have begun to examine with more attention the relevance of these surface appendages for virulence of plant bacterial pathogens.

View Article: PubMed Central - PubMed

Affiliation: Department of Plant Pathology and Microbiology and the Otto Warburg Center for Agricultural Biotechnology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel. saulb@agri.huji.ac.il.

ABSTRACT
Type IV pili (T4P) are hair-like appendages found on the surface of a wide range of bacteria belonging to the β-, γ-, and δ-Proteobacteria, Cyanobacteria and Firmicutes. They constitute an efficient device for a particular type of bacterial surface motility, named twitching, and are involved in several other bacterial activities and functions, including surface adherence, colonization, biofilm formation, genetic material uptake and virulence. Tens of genes are involved in T4P synthesis and regulation, with the majority of them being generally named pil/fim genes. Despite the multiple functionality of T4P and their well-established role in pathogenicity of animal pathogenic bacteria, relatively little attention has been given to the role of T4P in plant pathogenic bacteria. Only in recent years studies have begun to examine with more attention the relevance of these surface appendages for virulence of plant bacterial pathogens. The aim of this review is to summarize the current knowledge about T4P genetic machinery and its role in the interactions between phytopathogenic bacteria and their plant hosts.

No MeSH data available.


Related in: MedlinePlus

Type IV pili (T4P) structure and function. The T4P filament is mainly composed of pilin (PilA) subunits that are synthesized as prepilin and cleaved by the action of PilD, which also methylates N-terminal phenylalanine of the mature pilin. PilA units are assembled into the pilus by the cytoplasmic membrane protein PilC, with the filament emerging out via the outer membrane secretin PilQ. The ATPase proteins PilB and PilT mediate pilus assembly (extension) and disassembly (retraction), respectively. Proteins are named according to the Pseudomonas aeruginosa nomenclature, which is the one generally used for plant pathogenic bacteria (see text and Table 1 for functions of other proteins and alternative nomenclatures). This figure was prepared based on a figure from Chen and Dubnau [13].
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3927602&req=5

f1-genes-02-00706: Type IV pili (T4P) structure and function. The T4P filament is mainly composed of pilin (PilA) subunits that are synthesized as prepilin and cleaved by the action of PilD, which also methylates N-terminal phenylalanine of the mature pilin. PilA units are assembled into the pilus by the cytoplasmic membrane protein PilC, with the filament emerging out via the outer membrane secretin PilQ. The ATPase proteins PilB and PilT mediate pilus assembly (extension) and disassembly (retraction), respectively. Proteins are named according to the Pseudomonas aeruginosa nomenclature, which is the one generally used for plant pathogenic bacteria (see text and Table 1 for functions of other proteins and alternative nomenclatures). This figure was prepared based on a figure from Chen and Dubnau [13].

Mentions: T4P are mainly composed of thousands of copies of a small (13–23 kDa) subunit named pilin (in most cases termed PilA). All type IV pilins are synthesized as prepilins, which are processed by a peptidase that removes their N-terminal leader peptide (Figure 1). Based on differences in the length of their leader peptides and mature sequences, type IV pilins are divided into two subgroups, type IVa and type IVb. Type IVa pilins possess shorter leader peptides (less than 10 aa) and a typical length of about 150-160 aa. In contrast, type IVb pilins exhibit longer leader peptides (about 15–30 aa), and are either longer (180-200 aa) or shorter (about 40–50 aa) than type IVa pilins [5]. Interestingly, while type IVa pilins are present in a broad range of bacteria, type IVb pilins are found almost exclusively in enteric pathogens like Vibrio cholerae, enteropathogenic and enterotoxigenic Escherichia coli and Salmonella enterica [12].


Involvement of Type IV Pili in Pathogenicity of Plant Pathogenic Bacteria.

Burdman S, Bahar O, Parker JK, De La Fuente L - Genes (Basel) (2011)

Type IV pili (T4P) structure and function. The T4P filament is mainly composed of pilin (PilA) subunits that are synthesized as prepilin and cleaved by the action of PilD, which also methylates N-terminal phenylalanine of the mature pilin. PilA units are assembled into the pilus by the cytoplasmic membrane protein PilC, with the filament emerging out via the outer membrane secretin PilQ. The ATPase proteins PilB and PilT mediate pilus assembly (extension) and disassembly (retraction), respectively. Proteins are named according to the Pseudomonas aeruginosa nomenclature, which is the one generally used for plant pathogenic bacteria (see text and Table 1 for functions of other proteins and alternative nomenclatures). This figure was prepared based on a figure from Chen and Dubnau [13].
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3927602&req=5

f1-genes-02-00706: Type IV pili (T4P) structure and function. The T4P filament is mainly composed of pilin (PilA) subunits that are synthesized as prepilin and cleaved by the action of PilD, which also methylates N-terminal phenylalanine of the mature pilin. PilA units are assembled into the pilus by the cytoplasmic membrane protein PilC, with the filament emerging out via the outer membrane secretin PilQ. The ATPase proteins PilB and PilT mediate pilus assembly (extension) and disassembly (retraction), respectively. Proteins are named according to the Pseudomonas aeruginosa nomenclature, which is the one generally used for plant pathogenic bacteria (see text and Table 1 for functions of other proteins and alternative nomenclatures). This figure was prepared based on a figure from Chen and Dubnau [13].
Mentions: T4P are mainly composed of thousands of copies of a small (13–23 kDa) subunit named pilin (in most cases termed PilA). All type IV pilins are synthesized as prepilins, which are processed by a peptidase that removes their N-terminal leader peptide (Figure 1). Based on differences in the length of their leader peptides and mature sequences, type IV pilins are divided into two subgroups, type IVa and type IVb. Type IVa pilins possess shorter leader peptides (less than 10 aa) and a typical length of about 150-160 aa. In contrast, type IVb pilins exhibit longer leader peptides (about 15–30 aa), and are either longer (180-200 aa) or shorter (about 40–50 aa) than type IVa pilins [5]. Interestingly, while type IVa pilins are present in a broad range of bacteria, type IVb pilins are found almost exclusively in enteric pathogens like Vibrio cholerae, enteropathogenic and enterotoxigenic Escherichia coli and Salmonella enterica [12].

Bottom Line: Type IV pili (T4P) are hair-like appendages found on the surface of a wide range of bacteria belonging to the β-, γ-, and δ-Proteobacteria, Cyanobacteria and Firmicutes.They constitute an efficient device for a particular type of bacterial surface motility, named twitching, and are involved in several other bacterial activities and functions, including surface adherence, colonization, biofilm formation, genetic material uptake and virulence.Only in recent years studies have begun to examine with more attention the relevance of these surface appendages for virulence of plant bacterial pathogens.

View Article: PubMed Central - PubMed

Affiliation: Department of Plant Pathology and Microbiology and the Otto Warburg Center for Agricultural Biotechnology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel. saulb@agri.huji.ac.il.

ABSTRACT
Type IV pili (T4P) are hair-like appendages found on the surface of a wide range of bacteria belonging to the β-, γ-, and δ-Proteobacteria, Cyanobacteria and Firmicutes. They constitute an efficient device for a particular type of bacterial surface motility, named twitching, and are involved in several other bacterial activities and functions, including surface adherence, colonization, biofilm formation, genetic material uptake and virulence. Tens of genes are involved in T4P synthesis and regulation, with the majority of them being generally named pil/fim genes. Despite the multiple functionality of T4P and their well-established role in pathogenicity of animal pathogenic bacteria, relatively little attention has been given to the role of T4P in plant pathogenic bacteria. Only in recent years studies have begun to examine with more attention the relevance of these surface appendages for virulence of plant bacterial pathogens. The aim of this review is to summarize the current knowledge about T4P genetic machinery and its role in the interactions between phytopathogenic bacteria and their plant hosts.

No MeSH data available.


Related in: MedlinePlus