Limits...
Eicosapentaenoic acid/docosahexaenoic acid 1:1 ratio improves histological alterations in obese rats with metabolic syndrome.

Taltavull N, Muñoz-Cortés M, Lluís L, Jové M, Fortuño A, Molinar-Toribio E, Torres JL, Pazos M, Medina I, Nogués MR - Lipids Health Dis (2014)

Bottom Line: The quantitative data were expressed by mean ± SD and were compared among groups and treatments using ANOVA with post-hoc tests for parametric data and the U-Mann-Whitney for non-parametric data.Qualitative data were expressed in frequencies, and compared with contingency tables using χ² statistics.In both strains EPA:DHA 1:1 treatment improved inflammation related parameters in liver and kidney.

View Article: PubMed Central - HTML - PubMed

Affiliation: Unit of Pharmacology, Faculty of Medicine and Health Sciences, Rovira i Virgili University, Reus, Spain. nuria.taltavull@urv.cat.

ABSTRACT

Background: Marine polyunsaturated fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been associated with improvement in the Metabolic Syndrome (MS). The aim of this study is to evaluate how three fish-oil diets with different eicosapentaenoic acid/docosahexaenoic acid ratios (EPA/DHA ratio) affect the histology of liver, kidney, adipose tissue and aorta in a preliminary morphological study. This work uses an animal model of metabolic syndrome in comparison with healthy animals in order to provide information about the best EPA:DHA ratio to prevent or to improve metabolic syndrome symptoms.

Methods: 35 Wistar rats, as a control, and 35 spontaneously hypertensive obese rats (SHROB) were fed for 13 weeks with 3 different supplementation of fish oil containing EPA and DHA ratios (1:1, 2:1 and 1:2, respectively). All samples were stained with haematoxylin/eosin stain, except aorta samples, which were stained also with Verhoeff and van Gieson's stain. A histological study was carried out to evaluate changes. These changes were statistically analyzed using SPSS IBM 19 software. The quantitative data were expressed by mean ± SD and were compared among groups and treatments using ANOVA with post-hoc tests for parametric data and the U-Mann-Whitney for non-parametric data. Qualitative data were expressed in frequencies, and compared with contingency tables using χ² statistics.

Results: EPA:DHA 1:1 treatment tended to improve the density and the wrinkling of elastic layers in SHROB rats. Only Wistar rats fed with EPA:DHA 1:1 treatment did not show mast cells in adipose tissue and has less kidney atrophy. In both strains EPA:DHA 1:1 treatment improved inflammation related parameters in liver and kidney.

Conclusions: EPA:DHA 1:1 treatment was the most beneficial treatment since improved many histological parameters in both groups of rats.

Show MeSH

Related in: MedlinePlus

Liver results. Graphics of liver results in which: (W) refers to WISTAR stain, (S) refers to SHROB stain. (A) EPA:DHA 1:1, (B) EPA:DHA 2:1,(C) EPA:DHA 1:2. Equal letters, a, b, c, d, e means statistical differences among strains. (A) Liver samples of WISTAR rats no showed steatosis. Consequently, between WISTAR and SHROB statistically significant differences were observed in all treatment groups (EPA:DHA 1:1 p = 0.001, EPA:DHA 2:1 p = 0.001, EPA:DHA 1:2 p = 0.031). The graphics showns the grade of stetosi in SHROB rats, its location is shown in graphic (B) we can see how in SHROB rats steatosis tended to be periportal, but no statistically significant differences were found between treatment groups. (C) SHROB rats also showed greater lobular inflammation than Wistar. There were significant differences between strains in the EPA:DHA 2:1 and EPA:DHA 1:2 treatments (p = 0.025* and p = 0.02^, respectively). (D) The presence of microgranulomas was higher in SHROB rats than in Wistar, and the differences were significant in three tretament groups: EPA:DHA 2:1 (p = 0.005a). In SHROB fewer microgranulomas were present in the EPA:DHA 1:1 and EPA:DHA 1:2 treatments, but there were no significant differences with other groups. (E) We found lipogranulomas in the Wistar EPA:DHA 2:1 group and in all the groups of SHROB rats, with significant differences between strains for EPA:DHA 1:1 (p < 0.001), EPA:DHA 2:1 (p = 0.001), EPA:DHA 1:2 (p = 0.002). (F) Portal inflammation was present in both Wistar and SHROB rats but differences were only significant between strains in the EPA: DHA 1:1 treatment (p < 0.001). No differences between treatments were found in the same strain.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC3927584&req=5

Figure 4: Liver results. Graphics of liver results in which: (W) refers to WISTAR stain, (S) refers to SHROB stain. (A) EPA:DHA 1:1, (B) EPA:DHA 2:1,(C) EPA:DHA 1:2. Equal letters, a, b, c, d, e means statistical differences among strains. (A) Liver samples of WISTAR rats no showed steatosis. Consequently, between WISTAR and SHROB statistically significant differences were observed in all treatment groups (EPA:DHA 1:1 p = 0.001, EPA:DHA 2:1 p = 0.001, EPA:DHA 1:2 p = 0.031). The graphics showns the grade of stetosi in SHROB rats, its location is shown in graphic (B) we can see how in SHROB rats steatosis tended to be periportal, but no statistically significant differences were found between treatment groups. (C) SHROB rats also showed greater lobular inflammation than Wistar. There were significant differences between strains in the EPA:DHA 2:1 and EPA:DHA 1:2 treatments (p = 0.025* and p = 0.02^, respectively). (D) The presence of microgranulomas was higher in SHROB rats than in Wistar, and the differences were significant in three tretament groups: EPA:DHA 2:1 (p = 0.005a). In SHROB fewer microgranulomas were present in the EPA:DHA 1:1 and EPA:DHA 1:2 treatments, but there were no significant differences with other groups. (E) We found lipogranulomas in the Wistar EPA:DHA 2:1 group and in all the groups of SHROB rats, with significant differences between strains for EPA:DHA 1:1 (p < 0.001), EPA:DHA 2:1 (p = 0.001), EPA:DHA 1:2 (p = 0.002). (F) Portal inflammation was present in both Wistar and SHROB rats but differences were only significant between strains in the EPA: DHA 1:1 treatment (p < 0.001). No differences between treatments were found in the same strain.

Mentions: Results are shown in Figures 4 and 5. To sum up, in liver, the presence of steatosis in the centrilobular zone indicates initial harmful effects. The more widespread it is, the more the injury has progressed and the more severe it is. Therefore, periportal steatosis is worse than centrilobular steatosis, and non-zonal inflammation is the worst. In SHROB rats steatosis tended to be periportal, but no statistically significant differences were found between treatment groups. As in the other tissues, inflammation was evaluated according to the presence of white cells. SHROB rats also showed greater lobular inflammation than Wistar.


Eicosapentaenoic acid/docosahexaenoic acid 1:1 ratio improves histological alterations in obese rats with metabolic syndrome.

Taltavull N, Muñoz-Cortés M, Lluís L, Jové M, Fortuño A, Molinar-Toribio E, Torres JL, Pazos M, Medina I, Nogués MR - Lipids Health Dis (2014)

Liver results. Graphics of liver results in which: (W) refers to WISTAR stain, (S) refers to SHROB stain. (A) EPA:DHA 1:1, (B) EPA:DHA 2:1,(C) EPA:DHA 1:2. Equal letters, a, b, c, d, e means statistical differences among strains. (A) Liver samples of WISTAR rats no showed steatosis. Consequently, between WISTAR and SHROB statistically significant differences were observed in all treatment groups (EPA:DHA 1:1 p = 0.001, EPA:DHA 2:1 p = 0.001, EPA:DHA 1:2 p = 0.031). The graphics showns the grade of stetosi in SHROB rats, its location is shown in graphic (B) we can see how in SHROB rats steatosis tended to be periportal, but no statistically significant differences were found between treatment groups. (C) SHROB rats also showed greater lobular inflammation than Wistar. There were significant differences between strains in the EPA:DHA 2:1 and EPA:DHA 1:2 treatments (p = 0.025* and p = 0.02^, respectively). (D) The presence of microgranulomas was higher in SHROB rats than in Wistar, and the differences were significant in three tretament groups: EPA:DHA 2:1 (p = 0.005a). In SHROB fewer microgranulomas were present in the EPA:DHA 1:1 and EPA:DHA 1:2 treatments, but there were no significant differences with other groups. (E) We found lipogranulomas in the Wistar EPA:DHA 2:1 group and in all the groups of SHROB rats, with significant differences between strains for EPA:DHA 1:1 (p < 0.001), EPA:DHA 2:1 (p = 0.001), EPA:DHA 1:2 (p = 0.002). (F) Portal inflammation was present in both Wistar and SHROB rats but differences were only significant between strains in the EPA: DHA 1:1 treatment (p < 0.001). No differences between treatments were found in the same strain.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC3927584&req=5

Figure 4: Liver results. Graphics of liver results in which: (W) refers to WISTAR stain, (S) refers to SHROB stain. (A) EPA:DHA 1:1, (B) EPA:DHA 2:1,(C) EPA:DHA 1:2. Equal letters, a, b, c, d, e means statistical differences among strains. (A) Liver samples of WISTAR rats no showed steatosis. Consequently, between WISTAR and SHROB statistically significant differences were observed in all treatment groups (EPA:DHA 1:1 p = 0.001, EPA:DHA 2:1 p = 0.001, EPA:DHA 1:2 p = 0.031). The graphics showns the grade of stetosi in SHROB rats, its location is shown in graphic (B) we can see how in SHROB rats steatosis tended to be periportal, but no statistically significant differences were found between treatment groups. (C) SHROB rats also showed greater lobular inflammation than Wistar. There were significant differences between strains in the EPA:DHA 2:1 and EPA:DHA 1:2 treatments (p = 0.025* and p = 0.02^, respectively). (D) The presence of microgranulomas was higher in SHROB rats than in Wistar, and the differences were significant in three tretament groups: EPA:DHA 2:1 (p = 0.005a). In SHROB fewer microgranulomas were present in the EPA:DHA 1:1 and EPA:DHA 1:2 treatments, but there were no significant differences with other groups. (E) We found lipogranulomas in the Wistar EPA:DHA 2:1 group and in all the groups of SHROB rats, with significant differences between strains for EPA:DHA 1:1 (p < 0.001), EPA:DHA 2:1 (p = 0.001), EPA:DHA 1:2 (p = 0.002). (F) Portal inflammation was present in both Wistar and SHROB rats but differences were only significant between strains in the EPA: DHA 1:1 treatment (p < 0.001). No differences between treatments were found in the same strain.
Mentions: Results are shown in Figures 4 and 5. To sum up, in liver, the presence of steatosis in the centrilobular zone indicates initial harmful effects. The more widespread it is, the more the injury has progressed and the more severe it is. Therefore, periportal steatosis is worse than centrilobular steatosis, and non-zonal inflammation is the worst. In SHROB rats steatosis tended to be periportal, but no statistically significant differences were found between treatment groups. As in the other tissues, inflammation was evaluated according to the presence of white cells. SHROB rats also showed greater lobular inflammation than Wistar.

Bottom Line: The quantitative data were expressed by mean ± SD and were compared among groups and treatments using ANOVA with post-hoc tests for parametric data and the U-Mann-Whitney for non-parametric data.Qualitative data were expressed in frequencies, and compared with contingency tables using χ² statistics.In both strains EPA:DHA 1:1 treatment improved inflammation related parameters in liver and kidney.

View Article: PubMed Central - HTML - PubMed

Affiliation: Unit of Pharmacology, Faculty of Medicine and Health Sciences, Rovira i Virgili University, Reus, Spain. nuria.taltavull@urv.cat.

ABSTRACT

Background: Marine polyunsaturated fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been associated with improvement in the Metabolic Syndrome (MS). The aim of this study is to evaluate how three fish-oil diets with different eicosapentaenoic acid/docosahexaenoic acid ratios (EPA/DHA ratio) affect the histology of liver, kidney, adipose tissue and aorta in a preliminary morphological study. This work uses an animal model of metabolic syndrome in comparison with healthy animals in order to provide information about the best EPA:DHA ratio to prevent or to improve metabolic syndrome symptoms.

Methods: 35 Wistar rats, as a control, and 35 spontaneously hypertensive obese rats (SHROB) were fed for 13 weeks with 3 different supplementation of fish oil containing EPA and DHA ratios (1:1, 2:1 and 1:2, respectively). All samples were stained with haematoxylin/eosin stain, except aorta samples, which were stained also with Verhoeff and van Gieson's stain. A histological study was carried out to evaluate changes. These changes were statistically analyzed using SPSS IBM 19 software. The quantitative data were expressed by mean ± SD and were compared among groups and treatments using ANOVA with post-hoc tests for parametric data and the U-Mann-Whitney for non-parametric data. Qualitative data were expressed in frequencies, and compared with contingency tables using χ² statistics.

Results: EPA:DHA 1:1 treatment tended to improve the density and the wrinkling of elastic layers in SHROB rats. Only Wistar rats fed with EPA:DHA 1:1 treatment did not show mast cells in adipose tissue and has less kidney atrophy. In both strains EPA:DHA 1:1 treatment improved inflammation related parameters in liver and kidney.

Conclusions: EPA:DHA 1:1 treatment was the most beneficial treatment since improved many histological parameters in both groups of rats.

Show MeSH
Related in: MedlinePlus