Limits...
Dispersive liquid-liquid microextraction combined with ultrahigh performance liquid chromatography/tandem mass spectrometry for determination of organophosphate esters in aqueous samples.

Luo H, Xian Y, Guo X, Luo D, Wu Y, Lu Y, Yang B - ScientificWorldJournal (2014)

Bottom Line: The feasibility of this method was demonstrated by identifying OPEs in aqueous samples that exhibited spiked recoveries, which ranged between 48.7% and 58.3% for triethyl phosphate (TEP) as well as between 85.9% and 113% for the other OPEs.Only 2 of the 12 selected samples were tested to be positive for OPEs, and the total concentrations of OPEs in them were 1.1 and 1.6 µg/L, respectively.This method was confirmed to be simple, fast, and accurate for identifying OPEs in aqueous samples.

View Article: PubMed Central - PubMed

Affiliation: Guangzhou Quality Supervision and Testing Institute, Guangzhou 510110, China.

ABSTRACT
A new technique was established to identify eight organophosphate esters (OPEs) in this work. It utilised dispersive liquid-liquid microextraction in combination with ultrahigh performance liquid chromatography/tandem mass spectrometry. The type and volume of extraction solvents, dispersion agent, and amount of NaCl were optimized. The target analytes were detected in the range of 1.0-200 µ g/L with correlation coefficients ranging from 0.9982 to 0.9998, and the detection limits of the analytes were ranged from 0.02 to 0.07 µg/L (S/N = 3). The feasibility of this method was demonstrated by identifying OPEs in aqueous samples that exhibited spiked recoveries, which ranged between 48.7% and 58.3% for triethyl phosphate (TEP) as well as between 85.9% and 113% for the other OPEs. The precision was ranged from 3.2% to 9.3% (n = 6), and the interprecision was ranged from 2.6% to 12.3% (n = 5). Only 2 of the 12 selected samples were tested to be positive for OPEs, and the total concentrations of OPEs in them were 1.1 and 1.6 µg/L, respectively. This method was confirmed to be simple, fast, and accurate for identifying OPEs in aqueous samples.

Show MeSH
Optimization of extractant volume.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3927578&req=5

fig3: Optimization of extractant volume.

Mentions: During extraction, an appropriate solvent volume was essential for efficient extraction. Too little extraction solvent made it difficult to efficiently extract all the analytes, while an increase in the extraction solvent volume led to an increased extraction yield, but a lower limit of detection, because the analyte enrichment was impaired. In the present work, extraction solvent volumes of 100, 200, 300, and 400 μL were investigated with respect to their extraction efficiencies. As shown in Figure 3, with the increase in solvent volume, the extraction efficiency of TEP was markedly enhanced, while that of the other OPEs presented low solvent volume sensitivities. Because of the high water solubility of TEP, only larger volumes of extraction solvents could give sufficient distribution of TEP in the organic phase. Thus, 400 μL of extraction solvent was selected in this study with the prerequisite of maintaining the detection sensitivity.


Dispersive liquid-liquid microextraction combined with ultrahigh performance liquid chromatography/tandem mass spectrometry for determination of organophosphate esters in aqueous samples.

Luo H, Xian Y, Guo X, Luo D, Wu Y, Lu Y, Yang B - ScientificWorldJournal (2014)

Optimization of extractant volume.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3927578&req=5

fig3: Optimization of extractant volume.
Mentions: During extraction, an appropriate solvent volume was essential for efficient extraction. Too little extraction solvent made it difficult to efficiently extract all the analytes, while an increase in the extraction solvent volume led to an increased extraction yield, but a lower limit of detection, because the analyte enrichment was impaired. In the present work, extraction solvent volumes of 100, 200, 300, and 400 μL were investigated with respect to their extraction efficiencies. As shown in Figure 3, with the increase in solvent volume, the extraction efficiency of TEP was markedly enhanced, while that of the other OPEs presented low solvent volume sensitivities. Because of the high water solubility of TEP, only larger volumes of extraction solvents could give sufficient distribution of TEP in the organic phase. Thus, 400 μL of extraction solvent was selected in this study with the prerequisite of maintaining the detection sensitivity.

Bottom Line: The feasibility of this method was demonstrated by identifying OPEs in aqueous samples that exhibited spiked recoveries, which ranged between 48.7% and 58.3% for triethyl phosphate (TEP) as well as between 85.9% and 113% for the other OPEs.Only 2 of the 12 selected samples were tested to be positive for OPEs, and the total concentrations of OPEs in them were 1.1 and 1.6 µg/L, respectively.This method was confirmed to be simple, fast, and accurate for identifying OPEs in aqueous samples.

View Article: PubMed Central - PubMed

Affiliation: Guangzhou Quality Supervision and Testing Institute, Guangzhou 510110, China.

ABSTRACT
A new technique was established to identify eight organophosphate esters (OPEs) in this work. It utilised dispersive liquid-liquid microextraction in combination with ultrahigh performance liquid chromatography/tandem mass spectrometry. The type and volume of extraction solvents, dispersion agent, and amount of NaCl were optimized. The target analytes were detected in the range of 1.0-200 µ g/L with correlation coefficients ranging from 0.9982 to 0.9998, and the detection limits of the analytes were ranged from 0.02 to 0.07 µg/L (S/N = 3). The feasibility of this method was demonstrated by identifying OPEs in aqueous samples that exhibited spiked recoveries, which ranged between 48.7% and 58.3% for triethyl phosphate (TEP) as well as between 85.9% and 113% for the other OPEs. The precision was ranged from 3.2% to 9.3% (n = 6), and the interprecision was ranged from 2.6% to 12.3% (n = 5). Only 2 of the 12 selected samples were tested to be positive for OPEs, and the total concentrations of OPEs in them were 1.1 and 1.6 µg/L, respectively. This method was confirmed to be simple, fast, and accurate for identifying OPEs in aqueous samples.

Show MeSH