Limits...
Micro Fluidic Channel Machining on Fused Silica Glass Using Powder Blasting

View Article: PubMed Central - PubMed

ABSTRACT

In this study, micro fluid channels are machined on fused silica glass via powder blasting, a mechanical etching process, and the machining characteristics of the channels are experimentally evaluated. In the process, material removal is performed by the collision of micro abrasives injected by highly compressed air on to the target surface. This approach can be characterized as an integration of brittle mode machining based on micro crack propagation. Fused silica glass, a high purity synthetic amorphous silicon dioxide, is selected as a workpiece material. It has a very low thermal expansion coefficient and excellent optical qualities and exceptional transmittance over a wide spectral range, especially in the ultraviolet range. The powder blasting process parameters affecting the machined results are injection pressure, abrasive particle size and density, stand-off distance, number of nozzle scanning, and shape/size of the required patterns. In this study, the influence of the number of nozzle scanning, abrasive particle size, and pattern size on the formation of micro channels is investigated. Machined shapes and surface roughness are measured using a 3-dimensional vision profiler and the results are discussed.

No MeSH data available.


Top-view images of machined patterns. (300μm WA#600, 20 scanning)
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3927535&req=5

f8-sensors-08-00700: Top-view images of machined patterns. (300μm WA#600, 20 scanning)

Mentions: Figures 8 and 9 show magnified top-view images of channels, square and circular patterns included in the 300μm channels, which are designed to simulate reservoirs in biochips. The images are obtained using 3D Micro-Vision System. Figure 10 shows machined shape variations according to increasing scanning counts for 400μm circular pattern when (a) WA#600 and (b) WA#1200 abrasives are used. Measured machined depth and width variations of 200μm and 300μm channels are listed in Table 5 and 6, respectively. From these results, it can be seen that the machining capability of WA#600 is higher than that of WA#1200; the rate of the depth increase rises with increased scanning and abrasive size. Also, in Figure10, it can be observed that the machined width increases as scanning count increases. This is because the edges of used mask film (UV hardening polyurethane) are easily eroded by injected powder impact; thus, film thickness reduces rapidly, and top width of a channel increases during blasting.


Micro Fluidic Channel Machining on Fused Silica Glass Using Powder Blasting
Top-view images of machined patterns. (300μm WA#600, 20 scanning)
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3927535&req=5

f8-sensors-08-00700: Top-view images of machined patterns. (300μm WA#600, 20 scanning)
Mentions: Figures 8 and 9 show magnified top-view images of channels, square and circular patterns included in the 300μm channels, which are designed to simulate reservoirs in biochips. The images are obtained using 3D Micro-Vision System. Figure 10 shows machined shape variations according to increasing scanning counts for 400μm circular pattern when (a) WA#600 and (b) WA#1200 abrasives are used. Measured machined depth and width variations of 200μm and 300μm channels are listed in Table 5 and 6, respectively. From these results, it can be seen that the machining capability of WA#600 is higher than that of WA#1200; the rate of the depth increase rises with increased scanning and abrasive size. Also, in Figure10, it can be observed that the machined width increases as scanning count increases. This is because the edges of used mask film (UV hardening polyurethane) are easily eroded by injected powder impact; thus, film thickness reduces rapidly, and top width of a channel increases during blasting.

View Article: PubMed Central - PubMed

ABSTRACT

In this study, micro fluid channels are machined on fused silica glass via powder blasting, a mechanical etching process, and the machining characteristics of the channels are experimentally evaluated. In the process, material removal is performed by the collision of micro abrasives injected by highly compressed air on to the target surface. This approach can be characterized as an integration of brittle mode machining based on micro crack propagation. Fused silica glass, a high purity synthetic amorphous silicon dioxide, is selected as a workpiece material. It has a very low thermal expansion coefficient and excellent optical qualities and exceptional transmittance over a wide spectral range, especially in the ultraviolet range. The powder blasting process parameters affecting the machined results are injection pressure, abrasive particle size and density, stand-off distance, number of nozzle scanning, and shape/size of the required patterns. In this study, the influence of the number of nozzle scanning, abrasive particle size, and pattern size on the formation of micro channels is investigated. Machined shapes and surface roughness are measured using a 3-dimensional vision profiler and the results are discussed.

No MeSH data available.