Limits...
Micro Fluidic Channel Machining on Fused Silica Glass Using Powder Blasting

View Article: PubMed Central - PubMed

ABSTRACT

In this study, micro fluid channels are machined on fused silica glass via powder blasting, a mechanical etching process, and the machining characteristics of the channels are experimentally evaluated. In the process, material removal is performed by the collision of micro abrasives injected by highly compressed air on to the target surface. This approach can be characterized as an integration of brittle mode machining based on micro crack propagation. Fused silica glass, a high purity synthetic amorphous silicon dioxide, is selected as a workpiece material. It has a very low thermal expansion coefficient and excellent optical qualities and exceptional transmittance over a wide spectral range, especially in the ultraviolet range. The powder blasting process parameters affecting the machined results are injection pressure, abrasive particle size and density, stand-off distance, number of nozzle scanning, and shape/size of the required patterns. In this study, the influence of the number of nozzle scanning, abrasive particle size, and pattern size on the formation of micro channels is investigated. Machined shapes and surface roughness are measured using a 3-dimensional vision profiler and the results are discussed.

No MeSH data available.


Designed pattern and masked specimen.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3927535&req=5

f3-sensors-08-00700: Designed pattern and masked specimen.

Mentions: Figure 3(a) shows the details of the designed micro patterns and micro channels; square and circular patterns are designed for biochip application. Two types of patterns are designed: 200μm channels (W=200μm, A=D=400μm and L=8mm) and 300μm channels (W=300μm, A=D=600μm and L=8 mm). These patterns are used for the masking process.


Micro Fluidic Channel Machining on Fused Silica Glass Using Powder Blasting
Designed pattern and masked specimen.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3927535&req=5

f3-sensors-08-00700: Designed pattern and masked specimen.
Mentions: Figure 3(a) shows the details of the designed micro patterns and micro channels; square and circular patterns are designed for biochip application. Two types of patterns are designed: 200μm channels (W=200μm, A=D=400μm and L=8mm) and 300μm channels (W=300μm, A=D=600μm and L=8 mm). These patterns are used for the masking process.

View Article: PubMed Central - PubMed

ABSTRACT

In this study, micro fluid channels are machined on fused silica glass via powder blasting, a mechanical etching process, and the machining characteristics of the channels are experimentally evaluated. In the process, material removal is performed by the collision of micro abrasives injected by highly compressed air on to the target surface. This approach can be characterized as an integration of brittle mode machining based on micro crack propagation. Fused silica glass, a high purity synthetic amorphous silicon dioxide, is selected as a workpiece material. It has a very low thermal expansion coefficient and excellent optical qualities and exceptional transmittance over a wide spectral range, especially in the ultraviolet range. The powder blasting process parameters affecting the machined results are injection pressure, abrasive particle size and density, stand-off distance, number of nozzle scanning, and shape/size of the required patterns. In this study, the influence of the number of nozzle scanning, abrasive particle size, and pattern size on the formation of micro channels is investigated. Machined shapes and surface roughness are measured using a 3-dimensional vision profiler and the results are discussed.

No MeSH data available.