Limits...
Fabrication of Biochips with Micro Fluidic Channels by Micro End-milling and Powder Blasting

View Article: PubMed Central - PubMed

ABSTRACT

For microfabrications of biochips with micro fluidic channels, a large number of microfabrication techniques based on silicon or glass-based Micro-Electro-Mechanical System (MEMS) technologies were proposed in the last decade. In recent years, for low cost and mass production, polymer-based microfabrication techniques by microinjection molding and micro hot embossing have been proposed. These techniques, which require a proper photoresist, mask, UV light exposure, developing, and electroplating as a pre-process, are considered to have some problems. In this study, we propose a new microfabrication technology which consists of micro end-milling and powder blasting. This technique could be directly applied to fabricate the metal mold without any preprocesses. The metal mold with micro-channels is machined by micro end-milling, and then, burrs generated in the end-milling process are removed by powder blasting. From the experimental results, micro end-milling combined with powder blasting could be applied effectively for fabrication of the injection mold of biochips with micro fluidic channels.

No MeSH data available.


Shapes and analysis of micro fluidic channels machined by micro end-milling.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3927521&req=5

f7-sensors-08-01308: Shapes and analysis of micro fluidic channels machined by micro end-milling.

Mentions: Figure 7 shows a SEM image of the micro channel just after end-milling before deburring and the surface analysis results obtained by using WYKO NT-1000. Excessive micro burrs appeared just after micro end-milling. Figure 8(a) shows an SEM image of the micro channel of the specimen of Figure 7 just after deburring with powder WA #600 at the blasting pressure 0.15MPa, for 4 scans, and Figure 8(b) shows the surface analysis results of this specimen. In this case, as a whole, the deburring process was effectively carried out. However, when powder WA #600 was used, innumerable pockmarks appeared on the surface of the specimen as mentioned above, and surface roughness was not proper because the powder particle size was unsuitably large. As shown in the 3-D display of Figure 8(b), the sharp edges of the micro channel collapsed.


Fabrication of Biochips with Micro Fluidic Channels by Micro End-milling and Powder Blasting
Shapes and analysis of micro fluidic channels machined by micro end-milling.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3927521&req=5

f7-sensors-08-01308: Shapes and analysis of micro fluidic channels machined by micro end-milling.
Mentions: Figure 7 shows a SEM image of the micro channel just after end-milling before deburring and the surface analysis results obtained by using WYKO NT-1000. Excessive micro burrs appeared just after micro end-milling. Figure 8(a) shows an SEM image of the micro channel of the specimen of Figure 7 just after deburring with powder WA #600 at the blasting pressure 0.15MPa, for 4 scans, and Figure 8(b) shows the surface analysis results of this specimen. In this case, as a whole, the deburring process was effectively carried out. However, when powder WA #600 was used, innumerable pockmarks appeared on the surface of the specimen as mentioned above, and surface roughness was not proper because the powder particle size was unsuitably large. As shown in the 3-D display of Figure 8(b), the sharp edges of the micro channel collapsed.

View Article: PubMed Central - PubMed

ABSTRACT

For microfabrications of biochips with micro fluidic channels, a large number of microfabrication techniques based on silicon or glass-based Micro-Electro-Mechanical System (MEMS) technologies were proposed in the last decade. In recent years, for low cost and mass production, polymer-based microfabrication techniques by microinjection molding and micro hot embossing have been proposed. These techniques, which require a proper photoresist, mask, UV light exposure, developing, and electroplating as a pre-process, are considered to have some problems. In this study, we propose a new microfabrication technology which consists of micro end-milling and powder blasting. This technique could be directly applied to fabricate the metal mold without any preprocesses. The metal mold with micro-channels is machined by micro end-milling, and then, burrs generated in the end-milling process are removed by powder blasting. From the experimental results, micro end-milling combined with powder blasting could be applied effectively for fabrication of the injection mold of biochips with micro fluidic channels.

No MeSH data available.