Limits...
Integrating Remote Sensing Data with Directional Two-Dimensional Wavelet Analysis and Open Geospatial Techniques for Efficient Disaster Monitoring and Management

View Article: PubMed Central - PubMed

ABSTRACT

In Taiwan, earthquakes have long been recognized as a major cause of landslides that are wide spread by floods brought by typhoons followed. Distinguishing between landslide spatial patterns in different disturbance regimes is fundamental for disaster monitoring, management, and land-cover restoration. To circumscribe landslides, this study adopts the normalized difference vegetation index (NDVI), which can be determined by simply applying mathematical operations of near-infrared and visible-red spectral data immediately after remotely sensed data is acquired. In real-time disaster monitoring, the NDVI is more effective than using land-cover classifications generated from remotely sensed data as land-cover classification tasks are extremely time consuming. Directional two-dimensional (2D) wavelet analysis has an advantage over traditional spectrum analysis in that it determines localized variations along a specific direction when identifying dominant modes of change, and where those modes are located in multi-temporal remotely sensed images. Open geospatial techniques comprise a series of solutions developed based on Open Geospatial Consortium specifications that can be applied to encode data for interoperability and develop an open geospatial service for sharing data. This study presents a novel approach and framework that uses directional 2D wavelet analysis of real-time NDVI images to effectively identify landslide patterns and share resulting patterns via open geospatial techniques. As a case study, this study analyzed NDVI images derived from SPOT HRV images before and after the ChiChi earthquake (7.3 on the Richter scale) that hit the Chenyulan basin in Taiwan, as well as images after two large typhoons (xangsane and Toraji) to delineate the spatial patterns of landslides caused by major disturbances. Disturbed spatial patterns of landslides that followed these events were successfully delineated using 2D wavelet analysis, and results of pattern recognitions of landslides were distributed simultaneously to other agents using geography markup language. Real-time information allows successive platforms (agents; to work with local geospatial data for disaster management. Furthermore, the proposed is suitable for detecting landslides in various regions on continental, regional, and local scales using remotely sensed data in various resolutions derived from SPOT HRV, IKONOS, and QuickBird multispectral images.

No MeSH data available.


Related in: MedlinePlus

Implements for quick transformations of interoperable and exchangeable disaster information by open geospatial technologies with GML compliant documents that can be (a) transformed into SVG and browsed by a web browser, (b) retrieved by a WFS request, and (c) down-loaded and operated in a user-end application.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3927515&req=5

f9-sensors-08-01070: Implements for quick transformations of interoperable and exchangeable disaster information by open geospatial technologies with GML compliant documents that can be (a) transformed into SVG and browsed by a web browser, (b) retrieved by a WFS request, and (c) down-loaded and operated in a user-end application.

Mentions: Figure 9(a) presents a snapshot of the interface implemented by GML-compliant language (e.g., scalable vector graphics or SVG) allowing clients to browse analytical results on the Internet using a web browser. Figure 9(b) shows the WFS request for analytical results. The GML document is a document that can be opened by any generic web browser via an HTTP request. Thus, data can be distributed worldwide instantly. In addition to using a web browser, end users can use the WMS/WFS complaint applications, such as Google Earth, to request maps via the Internet (Figure 9(b)). Many commercialized GIS applications have also been implemented to handle GML documents (e.g., Tatuk GIS). The prototype in this study is a way of overcoming difficulties by rapidly integrating heterogeneous data and efficiently transporting disaster information via open geospatial technologies.


Integrating Remote Sensing Data with Directional Two-Dimensional Wavelet Analysis and Open Geospatial Techniques for Efficient Disaster Monitoring and Management
Implements for quick transformations of interoperable and exchangeable disaster information by open geospatial technologies with GML compliant documents that can be (a) transformed into SVG and browsed by a web browser, (b) retrieved by a WFS request, and (c) down-loaded and operated in a user-end application.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3927515&req=5

f9-sensors-08-01070: Implements for quick transformations of interoperable and exchangeable disaster information by open geospatial technologies with GML compliant documents that can be (a) transformed into SVG and browsed by a web browser, (b) retrieved by a WFS request, and (c) down-loaded and operated in a user-end application.
Mentions: Figure 9(a) presents a snapshot of the interface implemented by GML-compliant language (e.g., scalable vector graphics or SVG) allowing clients to browse analytical results on the Internet using a web browser. Figure 9(b) shows the WFS request for analytical results. The GML document is a document that can be opened by any generic web browser via an HTTP request. Thus, data can be distributed worldwide instantly. In addition to using a web browser, end users can use the WMS/WFS complaint applications, such as Google Earth, to request maps via the Internet (Figure 9(b)). Many commercialized GIS applications have also been implemented to handle GML documents (e.g., Tatuk GIS). The prototype in this study is a way of overcoming difficulties by rapidly integrating heterogeneous data and efficiently transporting disaster information via open geospatial technologies.

View Article: PubMed Central - PubMed

ABSTRACT

In Taiwan, earthquakes have long been recognized as a major cause of landslides that are wide spread by floods brought by typhoons followed. Distinguishing between landslide spatial patterns in different disturbance regimes is fundamental for disaster monitoring, management, and land-cover restoration. To circumscribe landslides, this study adopts the normalized difference vegetation index (NDVI), which can be determined by simply applying mathematical operations of near-infrared and visible-red spectral data immediately after remotely sensed data is acquired. In real-time disaster monitoring, the NDVI is more effective than using land-cover classifications generated from remotely sensed data as land-cover classification tasks are extremely time consuming. Directional two-dimensional (2D) wavelet analysis has an advantage over traditional spectrum analysis in that it determines localized variations along a specific direction when identifying dominant modes of change, and where those modes are located in multi-temporal remotely sensed images. Open geospatial techniques comprise a series of solutions developed based on Open Geospatial Consortium specifications that can be applied to encode data for interoperability and develop an open geospatial service for sharing data. This study presents a novel approach and framework that uses directional 2D wavelet analysis of real-time NDVI images to effectively identify landslide patterns and share resulting patterns via open geospatial techniques. As a case study, this study analyzed NDVI images derived from SPOT HRV images before and after the ChiChi earthquake (7.3 on the Richter scale) that hit the Chenyulan basin in Taiwan, as well as images after two large typhoons (xangsane and Toraji) to delineate the spatial patterns of landslides caused by major disturbances. Disturbed spatial patterns of landslides that followed these events were successfully delineated using 2D wavelet analysis, and results of pattern recognitions of landslides were distributed simultaneously to other agents using geography markup language. Real-time information allows successive platforms (agents; to work with local geospatial data for disaster management. Furthermore, the proposed is suitable for detecting landslides in various regions on continental, regional, and local scales using remotely sensed data in various resolutions derived from SPOT HRV, IKONOS, and QuickBird multispectral images.

No MeSH data available.


Related in: MedlinePlus