Limits...
Integrating Remote Sensing Data with Directional Two-Dimensional Wavelet Analysis and Open Geospatial Techniques for Efficient Disaster Monitoring and Management

View Article: PubMed Central - PubMed

ABSTRACT

In Taiwan, earthquakes have long been recognized as a major cause of landslides that are wide spread by floods brought by typhoons followed. Distinguishing between landslide spatial patterns in different disturbance regimes is fundamental for disaster monitoring, management, and land-cover restoration. To circumscribe landslides, this study adopts the normalized difference vegetation index (NDVI), which can be determined by simply applying mathematical operations of near-infrared and visible-red spectral data immediately after remotely sensed data is acquired. In real-time disaster monitoring, the NDVI is more effective than using land-cover classifications generated from remotely sensed data as land-cover classification tasks are extremely time consuming. Directional two-dimensional (2D) wavelet analysis has an advantage over traditional spectrum analysis in that it determines localized variations along a specific direction when identifying dominant modes of change, and where those modes are located in multi-temporal remotely sensed images. Open geospatial techniques comprise a series of solutions developed based on Open Geospatial Consortium specifications that can be applied to encode data for interoperability and develop an open geospatial service for sharing data. This study presents a novel approach and framework that uses directional 2D wavelet analysis of real-time NDVI images to effectively identify landslide patterns and share resulting patterns via open geospatial techniques. As a case study, this study analyzed NDVI images derived from SPOT HRV images before and after the ChiChi earthquake (7.3 on the Richter scale) that hit the Chenyulan basin in Taiwan, as well as images after two large typhoons (xangsane and Toraji) to delineate the spatial patterns of landslides caused by major disturbances. Disturbed spatial patterns of landslides that followed these events were successfully delineated using 2D wavelet analysis, and results of pattern recognitions of landslides were distributed simultaneously to other agents using geography markup language. Real-time information allows successive platforms (agents; to work with local geospatial data for disaster management. Furthermore, the proposed is suitable for detecting landslides in various regions on continental, regional, and local scales using remotely sensed data in various resolutions derived from SPOT HRV, IKONOS, and QuickBird multispectral images.

No MeSH data available.


The architecture of system for real time support of decision making
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3927515&req=5

f2-sensors-08-01070: The architecture of system for real time support of decision making

Mentions: A back-end database is utilized for storing and handling geospatial data (e.g., PostgreSQL and GRASS), while an accompanied add-on deals with geospatial data using spatial operations (e.g., PostGIS). Experts or analysts can easily retrieve raw geospatial data from a database to detect landsides and update the database with analytical results. A hypertext preprocessor (e.g., PHP) connects a web server (e.g., Apache) and back-end database, whereas a map server (e.g., Mapserver) conjugating the web server serves as a common gateway interface (CGI) for geospatial data requests from clients. The CGI implements protocols, termed web map service (WMS) and web feature service (WFS), developed by the OGC that allows end users to retrieve geospatial data via a hypertext transmission protocol (HTTP) request. The WMS allows clients to overlay map images retrieved from multiple sources for display on the Internet [15], whereas the WFS allows clients to retrieve and update geospatial data encoded in GML [16]. Via this architecture, clients can utilize map images and attributes of spatial features maps gathered from different sources (Figure 2).


Integrating Remote Sensing Data with Directional Two-Dimensional Wavelet Analysis and Open Geospatial Techniques for Efficient Disaster Monitoring and Management
The architecture of system for real time support of decision making
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3927515&req=5

f2-sensors-08-01070: The architecture of system for real time support of decision making
Mentions: A back-end database is utilized for storing and handling geospatial data (e.g., PostgreSQL and GRASS), while an accompanied add-on deals with geospatial data using spatial operations (e.g., PostGIS). Experts or analysts can easily retrieve raw geospatial data from a database to detect landsides and update the database with analytical results. A hypertext preprocessor (e.g., PHP) connects a web server (e.g., Apache) and back-end database, whereas a map server (e.g., Mapserver) conjugating the web server serves as a common gateway interface (CGI) for geospatial data requests from clients. The CGI implements protocols, termed web map service (WMS) and web feature service (WFS), developed by the OGC that allows end users to retrieve geospatial data via a hypertext transmission protocol (HTTP) request. The WMS allows clients to overlay map images retrieved from multiple sources for display on the Internet [15], whereas the WFS allows clients to retrieve and update geospatial data encoded in GML [16]. Via this architecture, clients can utilize map images and attributes of spatial features maps gathered from different sources (Figure 2).

View Article: PubMed Central - PubMed

ABSTRACT

In Taiwan, earthquakes have long been recognized as a major cause of landslides that are wide spread by floods brought by typhoons followed. Distinguishing between landslide spatial patterns in different disturbance regimes is fundamental for disaster monitoring, management, and land-cover restoration. To circumscribe landslides, this study adopts the normalized difference vegetation index (NDVI), which can be determined by simply applying mathematical operations of near-infrared and visible-red spectral data immediately after remotely sensed data is acquired. In real-time disaster monitoring, the NDVI is more effective than using land-cover classifications generated from remotely sensed data as land-cover classification tasks are extremely time consuming. Directional two-dimensional (2D) wavelet analysis has an advantage over traditional spectrum analysis in that it determines localized variations along a specific direction when identifying dominant modes of change, and where those modes are located in multi-temporal remotely sensed images. Open geospatial techniques comprise a series of solutions developed based on Open Geospatial Consortium specifications that can be applied to encode data for interoperability and develop an open geospatial service for sharing data. This study presents a novel approach and framework that uses directional 2D wavelet analysis of real-time NDVI images to effectively identify landslide patterns and share resulting patterns via open geospatial techniques. As a case study, this study analyzed NDVI images derived from SPOT HRV images before and after the ChiChi earthquake (7.3 on the Richter scale) that hit the Chenyulan basin in Taiwan, as well as images after two large typhoons (xangsane and Toraji) to delineate the spatial patterns of landslides caused by major disturbances. Disturbed spatial patterns of landslides that followed these events were successfully delineated using 2D wavelet analysis, and results of pattern recognitions of landslides were distributed simultaneously to other agents using geography markup language. Real-time information allows successive platforms (agents; to work with local geospatial data for disaster management. Furthermore, the proposed is suitable for detecting landslides in various regions on continental, regional, and local scales using remotely sensed data in various resolutions derived from SPOT HRV, IKONOS, and QuickBird multispectral images.

No MeSH data available.