Limits...
Improving Distributed Runoff Prediction in Urbanized Catchments with Remote Sensing based Estimates of Impervious Surface Cover

View Article: PubMed Central - PubMed

ABSTRACT

The amount and intensity of runoff on catchment scale are strongly determined by the presence of impervious land-cover types, which are the predominant cover types in urbanized areas. This paper examines the impact of different methods for estimating impervious surface cover on the prediction of peak discharges, as determined by a fully distributed rainfall-runoff model (WetSpa), for the upper part of the Woluwe River catchment in the southeastern part of Brussels. The study shows that detailed information on the spatial distribution of impervious surfaces, as obtained from remotely sensed data, produces substantially different estimates of peak discharges than traditional approaches based on expert judgment of average imperviousness for different types of urban land use. The study also demonstrates that sub-pixel estimation of imperviousness may be a useful alternative for more expensive high-resolution mapping for rainfall-runoff modelling at catchment scale.

No MeSH data available.


Land use for the Upper Woluwe River catchment (derived from the digital land-use map of Flanders produced by AGIV).
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3927506&req=5

f2-sensors-08-00910: Land use for the Upper Woluwe River catchment (derived from the digital land-use map of Flanders produced by AGIV).

Mentions: The land-use map of Flanders, produced by the Agency for Geographic Information Flanders (AGIV), was used as a reference data set to characterize land use within the study area. The map distinguishes 13 land-use types and was obtained using a hybrid approach combining interpretation of Landsat TM data with existing vector data sets (topographic maps, waterways, soil type, CORINE land-use data) for improvement of the original interpretation and for increasing the number of thematic classes. Dominant land-use types in the study area (Figure 2) are deciduous forest (55 %), urban area (29 %), coniferous forest (4 %) and mixed forest (6 %). Agriculture, grassland, marshland and open water cover 6 % of the total area. The urban part of the study area includes high density built-up area (12.7 %), low density built-up area (8.2 %), infrastructure (5.6 %), roads and highways (1.9 %), industrial land use (0.5 %), and also covers a very small part of the city centre (0.2 %). The original land-use map has a resolution of 20 m. For modeling purposes it was resampled to the 30 m cell size of the Landsat ETM+ data. A DEM with 30 m resolution was constructed from elevation contours and the river network. The elevation contours for every 2.5 m and the river network were digitized from topographic maps at a scale of 1:10,000. The DEM was generated in ArcInfo using TOPOGRID [34]. A digital soil map of the study area was obtained from AGIV and converted into 12 USDA soil texture classes based on textural properties.


Improving Distributed Runoff Prediction in Urbanized Catchments with Remote Sensing based Estimates of Impervious Surface Cover
Land use for the Upper Woluwe River catchment (derived from the digital land-use map of Flanders produced by AGIV).
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3927506&req=5

f2-sensors-08-00910: Land use for the Upper Woluwe River catchment (derived from the digital land-use map of Flanders produced by AGIV).
Mentions: The land-use map of Flanders, produced by the Agency for Geographic Information Flanders (AGIV), was used as a reference data set to characterize land use within the study area. The map distinguishes 13 land-use types and was obtained using a hybrid approach combining interpretation of Landsat TM data with existing vector data sets (topographic maps, waterways, soil type, CORINE land-use data) for improvement of the original interpretation and for increasing the number of thematic classes. Dominant land-use types in the study area (Figure 2) are deciduous forest (55 %), urban area (29 %), coniferous forest (4 %) and mixed forest (6 %). Agriculture, grassland, marshland and open water cover 6 % of the total area. The urban part of the study area includes high density built-up area (12.7 %), low density built-up area (8.2 %), infrastructure (5.6 %), roads and highways (1.9 %), industrial land use (0.5 %), and also covers a very small part of the city centre (0.2 %). The original land-use map has a resolution of 20 m. For modeling purposes it was resampled to the 30 m cell size of the Landsat ETM+ data. A DEM with 30 m resolution was constructed from elevation contours and the river network. The elevation contours for every 2.5 m and the river network were digitized from topographic maps at a scale of 1:10,000. The DEM was generated in ArcInfo using TOPOGRID [34]. A digital soil map of the study area was obtained from AGIV and converted into 12 USDA soil texture classes based on textural properties.

View Article: PubMed Central - PubMed

ABSTRACT

The amount and intensity of runoff on catchment scale are strongly determined by the presence of impervious land-cover types, which are the predominant cover types in urbanized areas. This paper examines the impact of different methods for estimating impervious surface cover on the prediction of peak discharges, as determined by a fully distributed rainfall-runoff model (WetSpa), for the upper part of the Woluwe River catchment in the southeastern part of Brussels. The study shows that detailed information on the spatial distribution of impervious surfaces, as obtained from remotely sensed data, produces substantially different estimates of peak discharges than traditional approaches based on expert judgment of average imperviousness for different types of urban land use. The study also demonstrates that sub-pixel estimation of imperviousness may be a useful alternative for more expensive high-resolution mapping for rainfall-runoff modelling at catchment scale.

No MeSH data available.