Limits...
Anatomical, functional, physiological and behavioural aspects of the development of mastication in early childhood.

Le Révérend BJ, Edelson LR, Loret C - Br. J. Nutr. (2013)

Bottom Line: The lack of reference foods and differences in testing methodologies across different studies do not allow us to draw conclusions about (1) the age at which mastication efficiency reaches maturity and (2) the effect of food consistency on the establishment of mature mastication efficiency.The effect of food consistency on the development of children's mastication efficiency has not been tested widely.However, both human and animal studies have reported the effect of food consistency on orofacial development, suggesting that a diet with harder textures enhances bone and muscle growth, which could indirectly lead to better mastication efficiency.

View Article: PubMed Central - PubMed

Affiliation: Nestlé Research Center, Vers-Chez-les-Blancs, CH 1000-26, Lausanne, Switzerland.

ABSTRACT
Mastication efficiency is defined as the efficiency of crushing food between the teeth and manipulating the resulting particles to form a swallowable food bolus. It is dependent on the orofacial anatomical features of the subject, the coordination of these anatomical features and the consistency of the food used during testing. Different measures have been used to indirectly quantify mastication efficiency as a function of children's age such as observations, food bolus characterisation, muscle activity measurement and jaw movement tracking. In the present review, we aim to describe the changes in the oral physiology (e.g. bone and muscle structure, teeth and soft tissues) of children and how these changes are associated with mastication abilities. We also review previous work on the effect of food consistency on children's mastication abilities and on their level of texture acceptance. The lack of reference foods and differences in testing methodologies across different studies do not allow us to draw conclusions about (1) the age at which mastication efficiency reaches maturity and (2) the effect of food consistency on the establishment of mature mastication efficiency. The effect of food consistency on the development of children's mastication efficiency has not been tested widely. However, both human and animal studies have reported the effect of food consistency on orofacial development, suggesting that a diet with harder textures enhances bone and muscle growth, which could indirectly lead to better mastication efficiency. Finally, it was also reported that (1) children are more likely to accept textures that they are able to manipulate and (2) early exposure to a range of textures facilitates the acceptance of foods of various textures later on. Recommending products well adapted to children's mastication during weaning could facilitate their acceptance of new textures and support the development of healthy eating habits.

Show MeSH

Related in: MedlinePlus

Electromyography traces of the left masseter (LM) and right masseter (RM) muscles from (a) 8-month-old, (b) 22-month-old and (c) adult(54) subjects during a chewing sequence showing the increase in synchronicity between the agonist muscles. (d) A similar analysis(53) can also be conducted with antagonist muscles. (e) The overlap time of activity between antagonist muscles is plotted (y= − 0·0043x+0·31). RT, right temporalis; LT, left temporalis; ABD, anterior belly of digastric.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3927374&req=5

fig4: Electromyography traces of the left masseter (LM) and right masseter (RM) muscles from (a) 8-month-old, (b) 22-month-old and (c) adult(54) subjects during a chewing sequence showing the increase in synchronicity between the agonist muscles. (d) A similar analysis(53) can also be conducted with antagonist muscles. (e) The overlap time of activity between antagonist muscles is plotted (y= − 0·0043x+0·31). RT, right temporalis; LT, left temporalis; ABD, anterior belly of digastric.

Mentions: Despite a wide variety of foods eaten, these studies showed that the development of adult-like chewing capabilities is characterised by a better synchronicity between the agonist muscles (temporalis and masseter) and between the antagonist muscles (temporalis/masseter and anterior belly of digastric) and a better defined onset and offset for bursts as well as a more constant amplitude during bursts with age (see Fig. 4). One can see in the figure that at 22 months of age (Fig. 4(b)), the electromyography traces are similar to the ones displayed during adult mastication (Fig. 4(c)), which led to the conclusion that at 22 months of age, children's muscle coordination may have reached maturity(54). Fig. 4 also shows that the overlap in contraction of the antagonist muscles decreases with age, and a piecewise linear fit seems to show that this synchronicity between antagonists is mastered by 34 months of age(55). This work also highlighted that the number of chewing cycles required to break down a food bolus decreases with age, as has been reported already by Gisel's work, although the chewing frequency does not evolve between 12 and 48 months of age. It should be noted that the (constant) frequency reported here was quite different (frequency varies in the range 1·5–2 Hz against 0·8–1·2 Hz for Gisel's work, see the previous section). This potentially highlights another limitation of visual observation to accurately monitor chewing activity.Fig. 4


Anatomical, functional, physiological and behavioural aspects of the development of mastication in early childhood.

Le Révérend BJ, Edelson LR, Loret C - Br. J. Nutr. (2013)

Electromyography traces of the left masseter (LM) and right masseter (RM) muscles from (a) 8-month-old, (b) 22-month-old and (c) adult(54) subjects during a chewing sequence showing the increase in synchronicity between the agonist muscles. (d) A similar analysis(53) can also be conducted with antagonist muscles. (e) The overlap time of activity between antagonist muscles is plotted (y= − 0·0043x+0·31). RT, right temporalis; LT, left temporalis; ABD, anterior belly of digastric.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3927374&req=5

fig4: Electromyography traces of the left masseter (LM) and right masseter (RM) muscles from (a) 8-month-old, (b) 22-month-old and (c) adult(54) subjects during a chewing sequence showing the increase in synchronicity between the agonist muscles. (d) A similar analysis(53) can also be conducted with antagonist muscles. (e) The overlap time of activity between antagonist muscles is plotted (y= − 0·0043x+0·31). RT, right temporalis; LT, left temporalis; ABD, anterior belly of digastric.
Mentions: Despite a wide variety of foods eaten, these studies showed that the development of adult-like chewing capabilities is characterised by a better synchronicity between the agonist muscles (temporalis and masseter) and between the antagonist muscles (temporalis/masseter and anterior belly of digastric) and a better defined onset and offset for bursts as well as a more constant amplitude during bursts with age (see Fig. 4). One can see in the figure that at 22 months of age (Fig. 4(b)), the electromyography traces are similar to the ones displayed during adult mastication (Fig. 4(c)), which led to the conclusion that at 22 months of age, children's muscle coordination may have reached maturity(54). Fig. 4 also shows that the overlap in contraction of the antagonist muscles decreases with age, and a piecewise linear fit seems to show that this synchronicity between antagonists is mastered by 34 months of age(55). This work also highlighted that the number of chewing cycles required to break down a food bolus decreases with age, as has been reported already by Gisel's work, although the chewing frequency does not evolve between 12 and 48 months of age. It should be noted that the (constant) frequency reported here was quite different (frequency varies in the range 1·5–2 Hz against 0·8–1·2 Hz for Gisel's work, see the previous section). This potentially highlights another limitation of visual observation to accurately monitor chewing activity.Fig. 4

Bottom Line: The lack of reference foods and differences in testing methodologies across different studies do not allow us to draw conclusions about (1) the age at which mastication efficiency reaches maturity and (2) the effect of food consistency on the establishment of mature mastication efficiency.The effect of food consistency on the development of children's mastication efficiency has not been tested widely.However, both human and animal studies have reported the effect of food consistency on orofacial development, suggesting that a diet with harder textures enhances bone and muscle growth, which could indirectly lead to better mastication efficiency.

View Article: PubMed Central - PubMed

Affiliation: Nestlé Research Center, Vers-Chez-les-Blancs, CH 1000-26, Lausanne, Switzerland.

ABSTRACT
Mastication efficiency is defined as the efficiency of crushing food between the teeth and manipulating the resulting particles to form a swallowable food bolus. It is dependent on the orofacial anatomical features of the subject, the coordination of these anatomical features and the consistency of the food used during testing. Different measures have been used to indirectly quantify mastication efficiency as a function of children's age such as observations, food bolus characterisation, muscle activity measurement and jaw movement tracking. In the present review, we aim to describe the changes in the oral physiology (e.g. bone and muscle structure, teeth and soft tissues) of children and how these changes are associated with mastication abilities. We also review previous work on the effect of food consistency on children's mastication abilities and on their level of texture acceptance. The lack of reference foods and differences in testing methodologies across different studies do not allow us to draw conclusions about (1) the age at which mastication efficiency reaches maturity and (2) the effect of food consistency on the establishment of mature mastication efficiency. The effect of food consistency on the development of children's mastication efficiency has not been tested widely. However, both human and animal studies have reported the effect of food consistency on orofacial development, suggesting that a diet with harder textures enhances bone and muscle growth, which could indirectly lead to better mastication efficiency. Finally, it was also reported that (1) children are more likely to accept textures that they are able to manipulate and (2) early exposure to a range of textures facilitates the acceptance of foods of various textures later on. Recommending products well adapted to children's mastication during weaning could facilitate their acceptance of new textures and support the development of healthy eating habits.

Show MeSH
Related in: MedlinePlus