Limits...
Induction of apoptosis through oxidative stress-related pathways in MCF-7, human breast cancer cells, by ethyl acetate extract of Dillenia suffruticosa.

Tor YS, Yazan LS, Foo JB, Armania N, Cheah YK, Abdullah R, Imam MU, Ismail N, Ismail M - BMC Complement Altern Med (2014)

Bottom Line: In this study, the anticancer effect of ethyl acetate extract of D. suffruticosa (EADs) was examined on human breast adenocarcinoma cell line MCF-7 and the molecular pathway involved was elucidated.EADs induced non-phase specific cell cycle arrest at different concentration and time point.It is suggested that EADs induced apoptosis in MCF-7 cells by modulating numerous genes which are involved in oxidative stress pathway.

View Article: PubMed Central - HTML - PubMed

Affiliation: Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia. latifahsy@upm.edu.my.

ABSTRACT

Background: Breast cancer is one of the most dreading types of cancer among women. Herbal medicine has becoming a potential source of treatment for breast cancer. Herbal plant Dillenia suffruticosa (Griff) Martelli under the family Dilleniaceae has been traditionally used to treat cancerous growth. In this study, the anticancer effect of ethyl acetate extract of D. suffruticosa (EADs) was examined on human breast adenocarcinoma cell line MCF-7 and the molecular pathway involved was elucidated.

Methods: EADs was obtained from the root of D. suffruticosa by using sequential solvent extraction. Cytotoxicity was determined by using MTT assay, mode of cell death by cell cycle analysis and apoptosis induction by Annexin-FITC/PI assay. Morphology changes in cells were observed under inverted light microscope. Involvement of selected genes in the oxidative stress-mediated signaling pathway was explored using multiplex gene expression analysis.

Results: The treatment of EADs caused cytotoxicity to MCF-7 cells in a dose- and time-dependent manner at 24, 48 and 72 hours with IC50 of 76 ± 2.3, 58 ± 0.7 and 39 ± 3.6 μg/mL, respectively. The IC50 of tamoxifen-treated MCF-7 cells was 8 ± 0.5 μg/mL. Induction of apoptosis by EADs was dose- and time- dependent. EADs induced non-phase specific cell cycle arrest at different concentration and time point. The multiplex mRNA expression study indicated that EADs-induced apoptosis was accompanied by upregulation of the expression of SOD1, SOD2, NF-κB, p53, p38 MAPK, and catalase, but downregulation of Akt1.

Conclusion: It is suggested that EADs induced apoptosis in MCF-7 cells by modulating numerous genes which are involved in oxidative stress pathway. Therefore, EADs has the potential to act as an effective intervention against breast cancer cells.

Show MeSH

Related in: MedlinePlus

Morphological changes of MCF-7 cells treated with EADs observed under an inverted light microscope. The cells exhibited morphological changes and characteristics of apoptosis such as cell shrinkage and rounding (black arrow), and detachment from the substatum (white arrow). Decrease in cell population was noted with the increase in the concentration of the extract. (a) 100X magnification (b) 400X magnification
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3927215&req=5

Figure 2: Morphological changes of MCF-7 cells treated with EADs observed under an inverted light microscope. The cells exhibited morphological changes and characteristics of apoptosis such as cell shrinkage and rounding (black arrow), and detachment from the substatum (white arrow). Decrease in cell population was noted with the increase in the concentration of the extract. (a) 100X magnification (b) 400X magnification

Mentions: The cell number reduced at 50 μg/mL of EADs at 72 hours. Cell detachment, cell rounding, cytoplasmic condensation and cell shrinkage were observed at 48 and 72 hours in MCF-7 cells treated with 50 μg/mL of EADs (Figure 2). At 25 μg/mL of EADs, cell shrinkage and cytoplasmic condensation were noted but the cell number increased over time.


Induction of apoptosis through oxidative stress-related pathways in MCF-7, human breast cancer cells, by ethyl acetate extract of Dillenia suffruticosa.

Tor YS, Yazan LS, Foo JB, Armania N, Cheah YK, Abdullah R, Imam MU, Ismail N, Ismail M - BMC Complement Altern Med (2014)

Morphological changes of MCF-7 cells treated with EADs observed under an inverted light microscope. The cells exhibited morphological changes and characteristics of apoptosis such as cell shrinkage and rounding (black arrow), and detachment from the substatum (white arrow). Decrease in cell population was noted with the increase in the concentration of the extract. (a) 100X magnification (b) 400X magnification
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3927215&req=5

Figure 2: Morphological changes of MCF-7 cells treated with EADs observed under an inverted light microscope. The cells exhibited morphological changes and characteristics of apoptosis such as cell shrinkage and rounding (black arrow), and detachment from the substatum (white arrow). Decrease in cell population was noted with the increase in the concentration of the extract. (a) 100X magnification (b) 400X magnification
Mentions: The cell number reduced at 50 μg/mL of EADs at 72 hours. Cell detachment, cell rounding, cytoplasmic condensation and cell shrinkage were observed at 48 and 72 hours in MCF-7 cells treated with 50 μg/mL of EADs (Figure 2). At 25 μg/mL of EADs, cell shrinkage and cytoplasmic condensation were noted but the cell number increased over time.

Bottom Line: In this study, the anticancer effect of ethyl acetate extract of D. suffruticosa (EADs) was examined on human breast adenocarcinoma cell line MCF-7 and the molecular pathway involved was elucidated.EADs induced non-phase specific cell cycle arrest at different concentration and time point.It is suggested that EADs induced apoptosis in MCF-7 cells by modulating numerous genes which are involved in oxidative stress pathway.

View Article: PubMed Central - HTML - PubMed

Affiliation: Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia. latifahsy@upm.edu.my.

ABSTRACT

Background: Breast cancer is one of the most dreading types of cancer among women. Herbal medicine has becoming a potential source of treatment for breast cancer. Herbal plant Dillenia suffruticosa (Griff) Martelli under the family Dilleniaceae has been traditionally used to treat cancerous growth. In this study, the anticancer effect of ethyl acetate extract of D. suffruticosa (EADs) was examined on human breast adenocarcinoma cell line MCF-7 and the molecular pathway involved was elucidated.

Methods: EADs was obtained from the root of D. suffruticosa by using sequential solvent extraction. Cytotoxicity was determined by using MTT assay, mode of cell death by cell cycle analysis and apoptosis induction by Annexin-FITC/PI assay. Morphology changes in cells were observed under inverted light microscope. Involvement of selected genes in the oxidative stress-mediated signaling pathway was explored using multiplex gene expression analysis.

Results: The treatment of EADs caused cytotoxicity to MCF-7 cells in a dose- and time-dependent manner at 24, 48 and 72 hours with IC50 of 76 ± 2.3, 58 ± 0.7 and 39 ± 3.6 μg/mL, respectively. The IC50 of tamoxifen-treated MCF-7 cells was 8 ± 0.5 μg/mL. Induction of apoptosis by EADs was dose- and time- dependent. EADs induced non-phase specific cell cycle arrest at different concentration and time point. The multiplex mRNA expression study indicated that EADs-induced apoptosis was accompanied by upregulation of the expression of SOD1, SOD2, NF-κB, p53, p38 MAPK, and catalase, but downregulation of Akt1.

Conclusion: It is suggested that EADs induced apoptosis in MCF-7 cells by modulating numerous genes which are involved in oxidative stress pathway. Therefore, EADs has the potential to act as an effective intervention against breast cancer cells.

Show MeSH
Related in: MedlinePlus