Limits...
Application of butterfly Clos-network in network-on-chip.

Liu H, Xie L, Liu J, Ding L - ScientificWorldJournal (2014)

Bottom Line: During the routing period, other nondestination nodes can be used as middle stages to transfer data packets to complete the routing mission.Therefore, this topology has the characteristic of multistage.Simulation analyses show that BFC inherits the rich path diversity of Clos network, and it has a better performance than butterfly network in throughput and delay in a quite congested traffic pattern.

View Article: PubMed Central - PubMed

Affiliation: Jiangxi University of Science and Technology, Ganzhou 341000, China.

ABSTRACT
This paper studied the topology of NoC (Network-on-Chip). By combining the characteristics of the Clos network and butterfly network, a new topology named BFC (Butterfly Clos-network) network was proposed. This topology integrates several modules, which belongs to the same layer but different dimensions, into a new module. In the BFC network, a bidirectional link is used to complete information exchange, instead of information exchange between different layers in the original network. During the routing period, other nondestination nodes can be used as middle stages to transfer data packets to complete the routing mission. Therefore, this topology has the characteristic of multistage. Simulation analyses show that BFC inherits the rich path diversity of Clos network, and it has a better performance than butterfly network in throughput and delay in a quite congested traffic pattern.

Show MeSH
Performance comparison of two matrix flow models.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3926393&req=5

fig14: Performance comparison of two matrix flow models.

Mentions: Figure 14 shows the performance comparison in the matrix flow network corresponding to end-to-end delay and throughput of the butterfly network and BFC network. The performance BFC network is still slightly better than the butterfly network, but the performance gap is not large. Two networks in the injection rate reach 0.2; and the latency begins to increase; the increase in the butterfly network trend is more obvious as shown in Figure 14(a). Throughput and latency have similar trends, and BFC network reaching the saturation point is higher than the butterfly network as shown in Figure 14(b).


Application of butterfly Clos-network in network-on-chip.

Liu H, Xie L, Liu J, Ding L - ScientificWorldJournal (2014)

Performance comparison of two matrix flow models.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3926393&req=5

fig14: Performance comparison of two matrix flow models.
Mentions: Figure 14 shows the performance comparison in the matrix flow network corresponding to end-to-end delay and throughput of the butterfly network and BFC network. The performance BFC network is still slightly better than the butterfly network, but the performance gap is not large. Two networks in the injection rate reach 0.2; and the latency begins to increase; the increase in the butterfly network trend is more obvious as shown in Figure 14(a). Throughput and latency have similar trends, and BFC network reaching the saturation point is higher than the butterfly network as shown in Figure 14(b).

Bottom Line: During the routing period, other nondestination nodes can be used as middle stages to transfer data packets to complete the routing mission.Therefore, this topology has the characteristic of multistage.Simulation analyses show that BFC inherits the rich path diversity of Clos network, and it has a better performance than butterfly network in throughput and delay in a quite congested traffic pattern.

View Article: PubMed Central - PubMed

Affiliation: Jiangxi University of Science and Technology, Ganzhou 341000, China.

ABSTRACT
This paper studied the topology of NoC (Network-on-Chip). By combining the characteristics of the Clos network and butterfly network, a new topology named BFC (Butterfly Clos-network) network was proposed. This topology integrates several modules, which belongs to the same layer but different dimensions, into a new module. In the BFC network, a bidirectional link is used to complete information exchange, instead of information exchange between different layers in the original network. During the routing period, other nondestination nodes can be used as middle stages to transfer data packets to complete the routing mission. Therefore, this topology has the characteristic of multistage. Simulation analyses show that BFC inherits the rich path diversity of Clos network, and it has a better performance than butterfly network in throughput and delay in a quite congested traffic pattern.

Show MeSH