Limits...
Application of butterfly Clos-network in network-on-chip.

Liu H, Xie L, Liu J, Ding L - ScientificWorldJournal (2014)

Bottom Line: During the routing period, other nondestination nodes can be used as middle stages to transfer data packets to complete the routing mission.Therefore, this topology has the characteristic of multistage.Simulation analyses show that BFC inherits the rich path diversity of Clos network, and it has a better performance than butterfly network in throughput and delay in a quite congested traffic pattern.

View Article: PubMed Central - PubMed

Affiliation: Jiangxi University of Science and Technology, Ganzhou 341000, China.

ABSTRACT
This paper studied the topology of NoC (Network-on-Chip). By combining the characteristics of the Clos network and butterfly network, a new topology named BFC (Butterfly Clos-network) network was proposed. This topology integrates several modules, which belongs to the same layer but different dimensions, into a new module. In the BFC network, a bidirectional link is used to complete information exchange, instead of information exchange between different layers in the original network. During the routing period, other nondestination nodes can be used as middle stages to transfer data packets to complete the routing mission. Therefore, this topology has the characteristic of multistage. Simulation analyses show that BFC inherits the rich path diversity of Clos network, and it has a better performance than butterfly network in throughput and delay in a quite congested traffic pattern.

Show MeSH
Comparison of two networks energy consumption.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3926393&req=5

fig11: Comparison of two networks energy consumption.

Mentions: As the BFC network provides the direct link between the same dimension nodes and the cross-links between the different dimension nodes. Compared with the Mesh topology, the required data transmission link length and the power consumption PL is smaller. There is only one link between nodes in Mesh structure, but the bandwidth of the same dimension is used by many links simultaneously in the BFC structure, so as to reduce the bandwidth of a single link. Thus, in the routing process, crossbar switch module required for conversion also reduces the amount of data, and the routing process PR energy consumption also is decreased. Since, in the BFC structure, each node corresponds to a number of links, so each node corresponds to the number of link input and output buffer more than the Mesh structure. So the energy PM required buffer devices higher than Mesh, but due to reduction of bandwidth of each link, you can switch to smaller capacity cache device to indirectly reduce network energy consumption. The comparison of the specific energy consumption of the network is shown in Figure 11.


Application of butterfly Clos-network in network-on-chip.

Liu H, Xie L, Liu J, Ding L - ScientificWorldJournal (2014)

Comparison of two networks energy consumption.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3926393&req=5

fig11: Comparison of two networks energy consumption.
Mentions: As the BFC network provides the direct link between the same dimension nodes and the cross-links between the different dimension nodes. Compared with the Mesh topology, the required data transmission link length and the power consumption PL is smaller. There is only one link between nodes in Mesh structure, but the bandwidth of the same dimension is used by many links simultaneously in the BFC structure, so as to reduce the bandwidth of a single link. Thus, in the routing process, crossbar switch module required for conversion also reduces the amount of data, and the routing process PR energy consumption also is decreased. Since, in the BFC structure, each node corresponds to a number of links, so each node corresponds to the number of link input and output buffer more than the Mesh structure. So the energy PM required buffer devices higher than Mesh, but due to reduction of bandwidth of each link, you can switch to smaller capacity cache device to indirectly reduce network energy consumption. The comparison of the specific energy consumption of the network is shown in Figure 11.

Bottom Line: During the routing period, other nondestination nodes can be used as middle stages to transfer data packets to complete the routing mission.Therefore, this topology has the characteristic of multistage.Simulation analyses show that BFC inherits the rich path diversity of Clos network, and it has a better performance than butterfly network in throughput and delay in a quite congested traffic pattern.

View Article: PubMed Central - PubMed

Affiliation: Jiangxi University of Science and Technology, Ganzhou 341000, China.

ABSTRACT
This paper studied the topology of NoC (Network-on-Chip). By combining the characteristics of the Clos network and butterfly network, a new topology named BFC (Butterfly Clos-network) network was proposed. This topology integrates several modules, which belongs to the same layer but different dimensions, into a new module. In the BFC network, a bidirectional link is used to complete information exchange, instead of information exchange between different layers in the original network. During the routing period, other nondestination nodes can be used as middle stages to transfer data packets to complete the routing mission. Therefore, this topology has the characteristic of multistage. Simulation analyses show that BFC inherits the rich path diversity of Clos network, and it has a better performance than butterfly network in throughput and delay in a quite congested traffic pattern.

Show MeSH