Limits...
Application of butterfly Clos-network in network-on-chip.

Liu H, Xie L, Liu J, Ding L - ScientificWorldJournal (2014)

Bottom Line: During the routing period, other nondestination nodes can be used as middle stages to transfer data packets to complete the routing mission.Therefore, this topology has the characteristic of multistage.Simulation analyses show that BFC inherits the rich path diversity of Clos network, and it has a better performance than butterfly network in throughput and delay in a quite congested traffic pattern.

View Article: PubMed Central - PubMed

Affiliation: Jiangxi University of Science and Technology, Ganzhou 341000, China.

ABSTRACT
This paper studied the topology of NoC (Network-on-Chip). By combining the characteristics of the Clos network and butterfly network, a new topology named BFC (Butterfly Clos-network) network was proposed. This topology integrates several modules, which belongs to the same layer but different dimensions, into a new module. In the BFC network, a bidirectional link is used to complete information exchange, instead of information exchange between different layers in the original network. During the routing period, other nondestination nodes can be used as middle stages to transfer data packets to complete the routing mission. Therefore, this topology has the characteristic of multistage. Simulation analyses show that BFC inherits the rich path diversity of Clos network, and it has a better performance than butterfly network in throughput and delay in a quite congested traffic pattern.

Show MeSH
BFC network topology.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3926393&req=5

fig6: BFC network topology.

Mentions: Figure 5 shows that the routing node R0, respectively, interconnects with routing nodes R1, R2, and R4. We make some improvements on the network structure, so that it has symmetry and better path diversity. Figure 6 is the improved network topology-BFC network structure, so butterfly network through several transformations will gradually evolve into BFC network structure.


Application of butterfly Clos-network in network-on-chip.

Liu H, Xie L, Liu J, Ding L - ScientificWorldJournal (2014)

BFC network topology.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3926393&req=5

fig6: BFC network topology.
Mentions: Figure 5 shows that the routing node R0, respectively, interconnects with routing nodes R1, R2, and R4. We make some improvements on the network structure, so that it has symmetry and better path diversity. Figure 6 is the improved network topology-BFC network structure, so butterfly network through several transformations will gradually evolve into BFC network structure.

Bottom Line: During the routing period, other nondestination nodes can be used as middle stages to transfer data packets to complete the routing mission.Therefore, this topology has the characteristic of multistage.Simulation analyses show that BFC inherits the rich path diversity of Clos network, and it has a better performance than butterfly network in throughput and delay in a quite congested traffic pattern.

View Article: PubMed Central - PubMed

Affiliation: Jiangxi University of Science and Technology, Ganzhou 341000, China.

ABSTRACT
This paper studied the topology of NoC (Network-on-Chip). By combining the characteristics of the Clos network and butterfly network, a new topology named BFC (Butterfly Clos-network) network was proposed. This topology integrates several modules, which belongs to the same layer but different dimensions, into a new module. In the BFC network, a bidirectional link is used to complete information exchange, instead of information exchange between different layers in the original network. During the routing period, other nondestination nodes can be used as middle stages to transfer data packets to complete the routing mission. Therefore, this topology has the characteristic of multistage. Simulation analyses show that BFC inherits the rich path diversity of Clos network, and it has a better performance than butterfly network in throughput and delay in a quite congested traffic pattern.

Show MeSH