Limits...
Application of butterfly Clos-network in network-on-chip.

Liu H, Xie L, Liu J, Ding L - ScientificWorldJournal (2014)

Bottom Line: During the routing period, other nondestination nodes can be used as middle stages to transfer data packets to complete the routing mission.Therefore, this topology has the characteristic of multistage.Simulation analyses show that BFC inherits the rich path diversity of Clos network, and it has a better performance than butterfly network in throughput and delay in a quite congested traffic pattern.

View Article: PubMed Central - PubMed

Affiliation: Jiangxi University of Science and Technology, Ganzhou 341000, China.

ABSTRACT
This paper studied the topology of NoC (Network-on-Chip). By combining the characteristics of the Clos network and butterfly network, a new topology named BFC (Butterfly Clos-network) network was proposed. This topology integrates several modules, which belongs to the same layer but different dimensions, into a new module. In the BFC network, a bidirectional link is used to complete information exchange, instead of information exchange between different layers in the original network. During the routing period, other nondestination nodes can be used as middle stages to transfer data packets to complete the routing mission. Therefore, this topology has the characteristic of multistage. Simulation analyses show that BFC inherits the rich path diversity of Clos network, and it has a better performance than butterfly network in throughput and delay in a quite congested traffic pattern.

Show MeSH
Three-node butterfly network routing plans.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3926393&req=5

fig3: Three-node butterfly network routing plans.

Mentions: BFC network layer of the butterfly network with a number of different dimensions of the node modules is integrated into a new module. The exchange of information between different layers uses a two-way link to complete in the new unified network. Figure 3 shows a three-layer butterfly network; each node is a routing node; they can connect a number of resource nodes. Four routing nodes R0, R1, R2, and R3 in the leftmost of Figure 3 are integrated into a single routing node, and the remaining nodes are integrated with the same approach, so we can get the routing node map shown in Figure 4. This transformation forming graph is also known as the planar butterfly network [28]. In the new network topology, the merger of the four routing information transmission between nodes is done directly in the internal nodes, data transfer between nodes using the combined data link transmission. The link is bidirectional, which can satisfy the input and output.


Application of butterfly Clos-network in network-on-chip.

Liu H, Xie L, Liu J, Ding L - ScientificWorldJournal (2014)

Three-node butterfly network routing plans.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3926393&req=5

fig3: Three-node butterfly network routing plans.
Mentions: BFC network layer of the butterfly network with a number of different dimensions of the node modules is integrated into a new module. The exchange of information between different layers uses a two-way link to complete in the new unified network. Figure 3 shows a three-layer butterfly network; each node is a routing node; they can connect a number of resource nodes. Four routing nodes R0, R1, R2, and R3 in the leftmost of Figure 3 are integrated into a single routing node, and the remaining nodes are integrated with the same approach, so we can get the routing node map shown in Figure 4. This transformation forming graph is also known as the planar butterfly network [28]. In the new network topology, the merger of the four routing information transmission between nodes is done directly in the internal nodes, data transfer between nodes using the combined data link transmission. The link is bidirectional, which can satisfy the input and output.

Bottom Line: During the routing period, other nondestination nodes can be used as middle stages to transfer data packets to complete the routing mission.Therefore, this topology has the characteristic of multistage.Simulation analyses show that BFC inherits the rich path diversity of Clos network, and it has a better performance than butterfly network in throughput and delay in a quite congested traffic pattern.

View Article: PubMed Central - PubMed

Affiliation: Jiangxi University of Science and Technology, Ganzhou 341000, China.

ABSTRACT
This paper studied the topology of NoC (Network-on-Chip). By combining the characteristics of the Clos network and butterfly network, a new topology named BFC (Butterfly Clos-network) network was proposed. This topology integrates several modules, which belongs to the same layer but different dimensions, into a new module. In the BFC network, a bidirectional link is used to complete information exchange, instead of information exchange between different layers in the original network. During the routing period, other nondestination nodes can be used as middle stages to transfer data packets to complete the routing mission. Therefore, this topology has the characteristic of multistage. Simulation analyses show that BFC inherits the rich path diversity of Clos network, and it has a better performance than butterfly network in throughput and delay in a quite congested traffic pattern.

Show MeSH