Limits...
Foot placement modification for a biped humanoid robot with narrow feet.

Hashimoto K, Hattori K, Otani T, Lim HO, Takanishi A - ScientificWorldJournal (2014)

Bottom Line: And a foot-landing point is also changed laterally to inhibit the robot from falling to the outside.To reduce a foot-landing impact, a virtual compliance control is applied to the vertical axis and the roll and pitch axes of the foot.Verification of the proposed method is conducted through experiments with a biped humanoid robot WABIAN-2R.

View Article: PubMed Central - PubMed

Affiliation: Waseda Research Institute for Science and Engineering, Waseda University, No. 41-304, 17 Kikui-cho, Shinjuku-ku, Tokyo 162-0044, Japan.

ABSTRACT
This paper describes a walking stabilization control for a biped humanoid robot with narrow feet. Most humanoid robots have larger feet than human beings to maintain their stability during walking. If robot's feet are as narrow as humans, it is difficult to realize a stable walk by using conventional stabilization controls. The proposed control modifies a foot placement according to the robot's attitude angle. If a robot tends to fall down, a foot angle is modified about the roll axis so that a swing foot contacts the ground horizontally. And a foot-landing point is also changed laterally to inhibit the robot from falling to the outside. To reduce a foot-landing impact, a virtual compliance control is applied to the vertical axis and the roll and pitch axes of the foot. Verification of the proposed method is conducted through experiments with a biped humanoid robot WABIAN-2R. WABIAN-2R realized a knee-bended walking with 30 mm breadth feet. Moreover, WABIAN-2R mounted on a human-like foot mechanism mimicking a human's foot arch structure realized a stable walking with the knee-stretched, heel-contact, and toe-off motion.

Show MeSH

Related in: MedlinePlus

Human-like foot mechanism with the medial longitudinal arch.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3926377&req=5

fig2: Human-like foot mechanism with the medial longitudinal arch.

Mentions: Meanwhile, we have developed a new biped foot mechanism mimicking a human's foot arch structure as shown in Figure 2 [13], and the foot breadth is as narrow as 90 mm like humans. WABIAN-2R became unstable with conventional stabilization controls when the foot breadth becomes 100 mm or narrower, and WABIAN-2R with the human-like foot mechanism tends to fall down laterally because the foot breadth is shorter than the foot length. Therefore, we considered that biped walking stability can be improved by changing lateral foot placement.


Foot placement modification for a biped humanoid robot with narrow feet.

Hashimoto K, Hattori K, Otani T, Lim HO, Takanishi A - ScientificWorldJournal (2014)

Human-like foot mechanism with the medial longitudinal arch.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3926377&req=5

fig2: Human-like foot mechanism with the medial longitudinal arch.
Mentions: Meanwhile, we have developed a new biped foot mechanism mimicking a human's foot arch structure as shown in Figure 2 [13], and the foot breadth is as narrow as 90 mm like humans. WABIAN-2R became unstable with conventional stabilization controls when the foot breadth becomes 100 mm or narrower, and WABIAN-2R with the human-like foot mechanism tends to fall down laterally because the foot breadth is shorter than the foot length. Therefore, we considered that biped walking stability can be improved by changing lateral foot placement.

Bottom Line: And a foot-landing point is also changed laterally to inhibit the robot from falling to the outside.To reduce a foot-landing impact, a virtual compliance control is applied to the vertical axis and the roll and pitch axes of the foot.Verification of the proposed method is conducted through experiments with a biped humanoid robot WABIAN-2R.

View Article: PubMed Central - PubMed

Affiliation: Waseda Research Institute for Science and Engineering, Waseda University, No. 41-304, 17 Kikui-cho, Shinjuku-ku, Tokyo 162-0044, Japan.

ABSTRACT
This paper describes a walking stabilization control for a biped humanoid robot with narrow feet. Most humanoid robots have larger feet than human beings to maintain their stability during walking. If robot's feet are as narrow as humans, it is difficult to realize a stable walk by using conventional stabilization controls. The proposed control modifies a foot placement according to the robot's attitude angle. If a robot tends to fall down, a foot angle is modified about the roll axis so that a swing foot contacts the ground horizontally. And a foot-landing point is also changed laterally to inhibit the robot from falling to the outside. To reduce a foot-landing impact, a virtual compliance control is applied to the vertical axis and the roll and pitch axes of the foot. Verification of the proposed method is conducted through experiments with a biped humanoid robot WABIAN-2R. WABIAN-2R realized a knee-bended walking with 30 mm breadth feet. Moreover, WABIAN-2R mounted on a human-like foot mechanism mimicking a human's foot arch structure realized a stable walking with the knee-stretched, heel-contact, and toe-off motion.

Show MeSH
Related in: MedlinePlus