Limits...
Fabrication of cubic PtCu nanocages and their enhanced electrocatalytic activity towards hydrogen peroxide.

Tian L, Zhong X, Hu W, Liu B, Li Y - Nanoscale Res Lett (2014)

Bottom Line: Cubic PtCu nanocages (NCs) were successfully synthesized through a redox reaction using cuprous oxide (Cu2O) as a sacrificial template and reducing agent.The porous PtCu NCs were composed of amounts of PtCu nanograins with an average particle size of 2.9 nm.The hollow porous nanostructure has potential applications in biosensors.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Research Center for Materials Interdisciplinary Science, Chongqing University of Arts and Sciences, Chongqing 402160, China. liubitao007@163.com.

ABSTRACT
Cubic PtCu nanocages (NCs) were successfully synthesized through a redox reaction using cuprous oxide (Cu2O) as a sacrificial template and reducing agent. The porous PtCu NCs were composed of amounts of PtCu nanograins with an average particle size of 2.9 nm. The electrocatalytic performance of the PtCu NC electrode towards H2O2 was studied by cyclic voltammetry (CV) and chronoamperometry. The prepared PtCu NC electrode exhibited excellent electrocatalytic activity towards H2O2, with a wide liner range from 5 μM to 22.25 mM, a relatively high sensitivity of 295.3 μA mM-1 cm-2, and a low detection limit of 5 μM (S/N = 3). The hollow porous nanostructure has potential applications in biosensors.

No MeSH data available.


XRD patterns and SEM, TEM, and HRTEM images. XRD patterns of Cu2O and PtCu NCs (a). SEM image of the Cu2O template (b) and PtCu NCs (c). TEM (d) and HRTEM (e, f) images of the PtCu NCs. The insets of (b) and (c) are the SEM images of single Cu2O crystal and PtCu NC, respectively. The inset of (d) is the TEM image of a single PtCu NC. The insets of (e) and (f) are the SAED pattern and lattice fringes of PtCu NC, respectively.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3924914&req=5

Figure 1: XRD patterns and SEM, TEM, and HRTEM images. XRD patterns of Cu2O and PtCu NCs (a). SEM image of the Cu2O template (b) and PtCu NCs (c). TEM (d) and HRTEM (e, f) images of the PtCu NCs. The insets of (b) and (c) are the SEM images of single Cu2O crystal and PtCu NC, respectively. The inset of (d) is the TEM image of a single PtCu NC. The insets of (e) and (f) are the SAED pattern and lattice fringes of PtCu NC, respectively.

Mentions: As shown in Figure 1a, no Cu2O (JCPDS 65–3288) residue remains in the final products. Compared to pure Pt (JCPDS 65–2868), all diffraction peaks shift to large angle direction. The diffraction peaks located at around 41.2°, 48.1°, and 70° can be indexed to cubic PtCu alloy (JCPDS 48–1549). The average particle size of PtCu was calculated to be 2.9 nm according to the Scherrer equation:


Fabrication of cubic PtCu nanocages and their enhanced electrocatalytic activity towards hydrogen peroxide.

Tian L, Zhong X, Hu W, Liu B, Li Y - Nanoscale Res Lett (2014)

XRD patterns and SEM, TEM, and HRTEM images. XRD patterns of Cu2O and PtCu NCs (a). SEM image of the Cu2O template (b) and PtCu NCs (c). TEM (d) and HRTEM (e, f) images of the PtCu NCs. The insets of (b) and (c) are the SEM images of single Cu2O crystal and PtCu NC, respectively. The inset of (d) is the TEM image of a single PtCu NC. The insets of (e) and (f) are the SAED pattern and lattice fringes of PtCu NC, respectively.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3924914&req=5

Figure 1: XRD patterns and SEM, TEM, and HRTEM images. XRD patterns of Cu2O and PtCu NCs (a). SEM image of the Cu2O template (b) and PtCu NCs (c). TEM (d) and HRTEM (e, f) images of the PtCu NCs. The insets of (b) and (c) are the SEM images of single Cu2O crystal and PtCu NC, respectively. The inset of (d) is the TEM image of a single PtCu NC. The insets of (e) and (f) are the SAED pattern and lattice fringes of PtCu NC, respectively.
Mentions: As shown in Figure 1a, no Cu2O (JCPDS 65–3288) residue remains in the final products. Compared to pure Pt (JCPDS 65–2868), all diffraction peaks shift to large angle direction. The diffraction peaks located at around 41.2°, 48.1°, and 70° can be indexed to cubic PtCu alloy (JCPDS 48–1549). The average particle size of PtCu was calculated to be 2.9 nm according to the Scherrer equation:

Bottom Line: Cubic PtCu nanocages (NCs) were successfully synthesized through a redox reaction using cuprous oxide (Cu2O) as a sacrificial template and reducing agent.The porous PtCu NCs were composed of amounts of PtCu nanograins with an average particle size of 2.9 nm.The hollow porous nanostructure has potential applications in biosensors.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Research Center for Materials Interdisciplinary Science, Chongqing University of Arts and Sciences, Chongqing 402160, China. liubitao007@163.com.

ABSTRACT
Cubic PtCu nanocages (NCs) were successfully synthesized through a redox reaction using cuprous oxide (Cu2O) as a sacrificial template and reducing agent. The porous PtCu NCs were composed of amounts of PtCu nanograins with an average particle size of 2.9 nm. The electrocatalytic performance of the PtCu NC electrode towards H2O2 was studied by cyclic voltammetry (CV) and chronoamperometry. The prepared PtCu NC electrode exhibited excellent electrocatalytic activity towards H2O2, with a wide liner range from 5 μM to 22.25 mM, a relatively high sensitivity of 295.3 μA mM-1 cm-2, and a low detection limit of 5 μM (S/N = 3). The hollow porous nanostructure has potential applications in biosensors.

No MeSH data available.