Limits...
Characterization of Chromobacterium violaceum pigment through a hyperspectral imaging system.

Gallardo MJ, Staforelli JP, Meza P, Bordeu I, Torres S - AMB Express (2014)

Bottom Line: This non-contact sensing technique opens avenues to study the temporal growing of a specific section in the bacterial colony.Further, from a 580 [nm] and 764 [nm] spatio-spectral time series, a wild-type and mutant Chromobacterium violaceum strains are characterized.Such study provides quantitative information about kinetic parameters of pigment production and bacterial growing.

View Article: PubMed Central - HTML - PubMed

Affiliation: Center for Optics and Photonics, Universidad de Concepción, Concepción, Chile. mgallardo@cefop.udec.cl.

ABSTRACT
In this paper, a comprehensive spatio-spectral and temporal analysis for Chromobacterium violaceum colonies is reported. A hyperspectral imaging (HSI) system is used to recover the spectral signatures of pigment production in a non-homogeneous media with high spectral resolution and high sensitivity in vivo, without destructing the sample. This non-contact sensing technique opens avenues to study the temporal growing of a specific section in the bacterial colony. Further, from a 580 [nm] and 764 [nm] spatio-spectral time series, a wild-type and mutant Chromobacterium violaceum strains are characterized. Such study provides quantitative information about kinetic parameters of pigment production and bacterial growing.

No MeSH data available.


Related in: MedlinePlus

Block diagram of the reflectance recovery process. The sequence start with the scanning of the target scene. Data are then post-processed, here the calibration model compensates for the system spectral response which gives the spatio-spectral data cube. Then, the spatio-spectral reading identifies the specific wavelength of maximum absorbance that allows to characterize the pigment intensity change. Finally, the pigment signal is plotted as a function of time. Here, each point is a scanning sequence at that time. The scanning frequency is of the order of hours for the lag and stationary phase and half an hour for the exponential phase.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3924903&req=5

Figure 4: Block diagram of the reflectance recovery process. The sequence start with the scanning of the target scene. Data are then post-processed, here the calibration model compensates for the system spectral response which gives the spatio-spectral data cube. Then, the spatio-spectral reading identifies the specific wavelength of maximum absorbance that allows to characterize the pigment intensity change. Finally, the pigment signal is plotted as a function of time. Here, each point is a scanning sequence at that time. The scanning frequency is of the order of hours for the lag and stationary phase and half an hour for the exponential phase.

Mentions: where (i0,k0) is the RI center. It should be noted that since each pixel represents an absorbance value, selecting random measurement points is also a valid alternative. Finally, to summarize the methodology, a block diagram explaining each stage of the reflectance recovery process is presented in Figure4.


Characterization of Chromobacterium violaceum pigment through a hyperspectral imaging system.

Gallardo MJ, Staforelli JP, Meza P, Bordeu I, Torres S - AMB Express (2014)

Block diagram of the reflectance recovery process. The sequence start with the scanning of the target scene. Data are then post-processed, here the calibration model compensates for the system spectral response which gives the spatio-spectral data cube. Then, the spatio-spectral reading identifies the specific wavelength of maximum absorbance that allows to characterize the pigment intensity change. Finally, the pigment signal is plotted as a function of time. Here, each point is a scanning sequence at that time. The scanning frequency is of the order of hours for the lag and stationary phase and half an hour for the exponential phase.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3924903&req=5

Figure 4: Block diagram of the reflectance recovery process. The sequence start with the scanning of the target scene. Data are then post-processed, here the calibration model compensates for the system spectral response which gives the spatio-spectral data cube. Then, the spatio-spectral reading identifies the specific wavelength of maximum absorbance that allows to characterize the pigment intensity change. Finally, the pigment signal is plotted as a function of time. Here, each point is a scanning sequence at that time. The scanning frequency is of the order of hours for the lag and stationary phase and half an hour for the exponential phase.
Mentions: where (i0,k0) is the RI center. It should be noted that since each pixel represents an absorbance value, selecting random measurement points is also a valid alternative. Finally, to summarize the methodology, a block diagram explaining each stage of the reflectance recovery process is presented in Figure4.

Bottom Line: This non-contact sensing technique opens avenues to study the temporal growing of a specific section in the bacterial colony.Further, from a 580 [nm] and 764 [nm] spatio-spectral time series, a wild-type and mutant Chromobacterium violaceum strains are characterized.Such study provides quantitative information about kinetic parameters of pigment production and bacterial growing.

View Article: PubMed Central - HTML - PubMed

Affiliation: Center for Optics and Photonics, Universidad de Concepción, Concepción, Chile. mgallardo@cefop.udec.cl.

ABSTRACT
In this paper, a comprehensive spatio-spectral and temporal analysis for Chromobacterium violaceum colonies is reported. A hyperspectral imaging (HSI) system is used to recover the spectral signatures of pigment production in a non-homogeneous media with high spectral resolution and high sensitivity in vivo, without destructing the sample. This non-contact sensing technique opens avenues to study the temporal growing of a specific section in the bacterial colony. Further, from a 580 [nm] and 764 [nm] spatio-spectral time series, a wild-type and mutant Chromobacterium violaceum strains are characterized. Such study provides quantitative information about kinetic parameters of pigment production and bacterial growing.

No MeSH data available.


Related in: MedlinePlus