Limits...
Adolescents' risky decision-making activates neural networks related to social cognition and cognitive control processes.

Rodrigo MJ, Padrón I, de Vega M, Ferstl EC - Front Hum Neurosci (2014)

Bottom Line: We hypothesize that the social context could engage brain regions associated with social cognition processes and developmental changes are also expected.Risky as compared to ambiguous scenarios activated bilateral temporoparietal junction (TPJ), bilateral middle temporal gyrus (MTG), right medial prefrontal cortex, and the precuneus bilaterally; i.e., brain regions related to social cognition processes, such as self-reflection and theory of mind (ToM).These findings call for more comprehensive developmental accounts of decision-making in social contexts that incorporate the role of emotional and social cognition processes.

View Article: PubMed Central - PubMed

Affiliation: Faculty of Psychology, University of La Laguna, San Cristobal de La Laguna, Santa Cruz de Tenerife Spain.

ABSTRACT
This study examines by means of functional magnetic resonance imaging the neural mechanisms underlying adolescents' risk decision-making in social contexts. We hypothesize that the social context could engage brain regions associated with social cognition processes and developmental changes are also expected. Sixty participants (adolescents: 17-18, and young adults: 21-22 years old) read narratives describing typical situations of decision-making in the presence of peers. They were asked to make choices in risky situations (e.g., taking or refusing a drug) or ambiguous situations (e.g., eating a hamburger or a hotdog). Risky as compared to ambiguous scenarios activated bilateral temporoparietal junction (TPJ), bilateral middle temporal gyrus (MTG), right medial prefrontal cortex, and the precuneus bilaterally; i.e., brain regions related to social cognition processes, such as self-reflection and theory of mind (ToM). In addition, brain structures related to cognitive control were active [right anterior cingulate cortex (ACC), bilateral dorsolateral prefrontal cortex (DLPFC), bilateral orbitofrontal cortex], whereas no significant clusters were obtained in the reward system (ventral striatum). Choosing the dangerous option involved a further activation of control areas (ACC) and emotional and social cognition areas (temporal pole). Adolescents employed more neural resources than young adults in the right DLPFC and the right TPJ in risk situations. When choosing the dangerous option, young adults showed a further engagement in ToM related regions (bilateral MTG) and in motor control regions related to the planning of actions (pre-supplementary motor area). Finally, the right insula and the right superior temporal gyrus were more activated in women than in men, suggesting more emotional involvement and more intensive modeling of the others' perspective in the risky conditions. These findings call for more comprehensive developmental accounts of decision-making in social contexts that incorporate the role of emotional and social cognition processes.

No MeSH data available.


Related in: MedlinePlus

(A) Differential activations in Adolescents (N = 30) compared to Young adults (N = 30) in the contrast Risk > Ambiguity, produced two significant clusters in the right DLPFC and the right TPJ. The changes in the BOLD signal across time for these regions are also shown in each age group. (B) Differential activations in Females (N = 30) compared to Males (N = 30), in the contrast Risk > Ambiguity, produced two clusters in the right insula and the superior temporal gyrus. Also the changes in the BOLD signal across time are shown for these regions in each gender group, using time intervals of 2.5 s. Age and gender results were significant at an uncorrected threshold of p = 0.001, and K > 10.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3924553&req=5

Figure 4: (A) Differential activations in Adolescents (N = 30) compared to Young adults (N = 30) in the contrast Risk > Ambiguity, produced two significant clusters in the right DLPFC and the right TPJ. The changes in the BOLD signal across time for these regions are also shown in each age group. (B) Differential activations in Females (N = 30) compared to Males (N = 30), in the contrast Risk > Ambiguity, produced two clusters in the right insula and the superior temporal gyrus. Also the changes in the BOLD signal across time are shown for these regions in each gender group, using time intervals of 2.5 s. Age and gender results were significant at an uncorrected threshold of p = 0.001, and K > 10.

Mentions: Concerning the contrast between Risk vs. Ambiguous conditions, as Table 1 shows, the direct contrast between the two age groups produced significant differences in the adolescents > young adults contrast for the right middle frontal gyrus (DLPFC) and the right TPJ (See Figure 4A). Table 1 also shows the direct statistical contrasts testing the gender effect, which yield significant effects in the female > male comparison in the right insula and right superior temporal gyrus (see Figure 4B).


Adolescents' risky decision-making activates neural networks related to social cognition and cognitive control processes.

Rodrigo MJ, Padrón I, de Vega M, Ferstl EC - Front Hum Neurosci (2014)

(A) Differential activations in Adolescents (N = 30) compared to Young adults (N = 30) in the contrast Risk > Ambiguity, produced two significant clusters in the right DLPFC and the right TPJ. The changes in the BOLD signal across time for these regions are also shown in each age group. (B) Differential activations in Females (N = 30) compared to Males (N = 30), in the contrast Risk > Ambiguity, produced two clusters in the right insula and the superior temporal gyrus. Also the changes in the BOLD signal across time are shown for these regions in each gender group, using time intervals of 2.5 s. Age and gender results were significant at an uncorrected threshold of p = 0.001, and K > 10.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3924553&req=5

Figure 4: (A) Differential activations in Adolescents (N = 30) compared to Young adults (N = 30) in the contrast Risk > Ambiguity, produced two significant clusters in the right DLPFC and the right TPJ. The changes in the BOLD signal across time for these regions are also shown in each age group. (B) Differential activations in Females (N = 30) compared to Males (N = 30), in the contrast Risk > Ambiguity, produced two clusters in the right insula and the superior temporal gyrus. Also the changes in the BOLD signal across time are shown for these regions in each gender group, using time intervals of 2.5 s. Age and gender results were significant at an uncorrected threshold of p = 0.001, and K > 10.
Mentions: Concerning the contrast between Risk vs. Ambiguous conditions, as Table 1 shows, the direct contrast between the two age groups produced significant differences in the adolescents > young adults contrast for the right middle frontal gyrus (DLPFC) and the right TPJ (See Figure 4A). Table 1 also shows the direct statistical contrasts testing the gender effect, which yield significant effects in the female > male comparison in the right insula and right superior temporal gyrus (see Figure 4B).

Bottom Line: We hypothesize that the social context could engage brain regions associated with social cognition processes and developmental changes are also expected.Risky as compared to ambiguous scenarios activated bilateral temporoparietal junction (TPJ), bilateral middle temporal gyrus (MTG), right medial prefrontal cortex, and the precuneus bilaterally; i.e., brain regions related to social cognition processes, such as self-reflection and theory of mind (ToM).These findings call for more comprehensive developmental accounts of decision-making in social contexts that incorporate the role of emotional and social cognition processes.

View Article: PubMed Central - PubMed

Affiliation: Faculty of Psychology, University of La Laguna, San Cristobal de La Laguna, Santa Cruz de Tenerife Spain.

ABSTRACT
This study examines by means of functional magnetic resonance imaging the neural mechanisms underlying adolescents' risk decision-making in social contexts. We hypothesize that the social context could engage brain regions associated with social cognition processes and developmental changes are also expected. Sixty participants (adolescents: 17-18, and young adults: 21-22 years old) read narratives describing typical situations of decision-making in the presence of peers. They were asked to make choices in risky situations (e.g., taking or refusing a drug) or ambiguous situations (e.g., eating a hamburger or a hotdog). Risky as compared to ambiguous scenarios activated bilateral temporoparietal junction (TPJ), bilateral middle temporal gyrus (MTG), right medial prefrontal cortex, and the precuneus bilaterally; i.e., brain regions related to social cognition processes, such as self-reflection and theory of mind (ToM). In addition, brain structures related to cognitive control were active [right anterior cingulate cortex (ACC), bilateral dorsolateral prefrontal cortex (DLPFC), bilateral orbitofrontal cortex], whereas no significant clusters were obtained in the reward system (ventral striatum). Choosing the dangerous option involved a further activation of control areas (ACC) and emotional and social cognition areas (temporal pole). Adolescents employed more neural resources than young adults in the right DLPFC and the right TPJ in risk situations. When choosing the dangerous option, young adults showed a further engagement in ToM related regions (bilateral MTG) and in motor control regions related to the planning of actions (pre-supplementary motor area). Finally, the right insula and the right superior temporal gyrus were more activated in women than in men, suggesting more emotional involvement and more intensive modeling of the others' perspective in the risky conditions. These findings call for more comprehensive developmental accounts of decision-making in social contexts that incorporate the role of emotional and social cognition processes.

No MeSH data available.


Related in: MedlinePlus