Limits...
On robust methodologies for managing public health care systems.

Nimmagadda SL, Dreher HV - Int J Environ Res Public Health (2014)

Bottom Line: In addition to rigor on data mining and visualization, an added focus is on values of interpretation of data views, from processed full-bodied diagnosis, subsequent prescription and appropriate medications.The proposed methodology, is a robust back-end application, for web-based patient-doctor consultations and e-Health care management systems through which, billions of dollars spent on medical services, can be saved, in addition to improving quality of life and average life span of a person.Government health departments and agencies, private and government medical practitioners including social welfare organizations are typical users of these systems.

View Article: PubMed Central - PubMed

Affiliation: School of Information Systems, CBS, Curtin University, Perth, 6102 WA, Australia. shastri.nimmagadda2011@gmail.com.

ABSTRACT
Authors focus on ontology-based multidimensional data warehousing and mining methodologies, addressing various issues on organizing, reporting and documenting diabetic cases and their associated ailments, including causalities. Map and other diagnostic data views, depicting similarity and comparison of attributes, extracted from warehouses, are used for understanding the ailments, based on gender, age, geography, food-habits and other hereditary event attributes. In addition to rigor on data mining and visualization, an added focus is on values of interpretation of data views, from processed full-bodied diagnosis, subsequent prescription and appropriate medications. The proposed methodology, is a robust back-end application, for web-based patient-doctor consultations and e-Health care management systems through which, billions of dollars spent on medical services, can be saved, in addition to improving quality of life and average life span of a person. Government health departments and agencies, private and government medical practitioners including social welfare organizations are typical users of these systems.

Show MeSH

Related in: MedlinePlus

Connecting multiple domain ontologies.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3924495&req=5

ijerph-11-01106-f001: Connecting multiple domain ontologies.

Mentions: Even though multiple domains-research is ongoing, an integrated research effort on the connectivity of food-diabetic domains is lacking, especially using the existing information systems (IS) and the proposed IS solutions. Worldwide, governments spend billions of dollars on preventive health-care systems and high priority medications. Countrywise diabetic cases and associated diseases, have so far been difficult to document and or report, because of complications in organizing these data and information on geographic and periodic scales. Social welfare organizations, medical institutions, clinical specialists, nutrition professionals and dieticians often encounter problems of data and information access on both these scales. Awareness includes early preventive measures and already high-risk patients on high priority treatments, such as medication and implementing healthy food habits. Food intake affects blood sugar, which is root cause of the diabetic disease. In developed countries, this is a common disease, though this trend is changing in recent years. In developing countries such as, India, China and other Latin American countries, there is an increasing attention and awareness. In a mass population, initiatives must include electronic consultations, electronic prescriptions, greater reliance on evidence-based medication, care collaboration centers with easy access to diabetic patients’ medical records and improved inventory management. These initiatives may complicate the design, development and implementation processes on a massive scale. For this purpose, ontology-based multidimensional data warehousing and mining are proposed for physical and logical organization of heterogeneous patients’ and medical professional’s data. As shown in Figure 1, different domain ontologies are modelled. The methodologies ensure that multidimensional data located in a centralized pool guarantee the cost savings and quality care programs at local and global-centers.


On robust methodologies for managing public health care systems.

Nimmagadda SL, Dreher HV - Int J Environ Res Public Health (2014)

Connecting multiple domain ontologies.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3924495&req=5

ijerph-11-01106-f001: Connecting multiple domain ontologies.
Mentions: Even though multiple domains-research is ongoing, an integrated research effort on the connectivity of food-diabetic domains is lacking, especially using the existing information systems (IS) and the proposed IS solutions. Worldwide, governments spend billions of dollars on preventive health-care systems and high priority medications. Countrywise diabetic cases and associated diseases, have so far been difficult to document and or report, because of complications in organizing these data and information on geographic and periodic scales. Social welfare organizations, medical institutions, clinical specialists, nutrition professionals and dieticians often encounter problems of data and information access on both these scales. Awareness includes early preventive measures and already high-risk patients on high priority treatments, such as medication and implementing healthy food habits. Food intake affects blood sugar, which is root cause of the diabetic disease. In developed countries, this is a common disease, though this trend is changing in recent years. In developing countries such as, India, China and other Latin American countries, there is an increasing attention and awareness. In a mass population, initiatives must include electronic consultations, electronic prescriptions, greater reliance on evidence-based medication, care collaboration centers with easy access to diabetic patients’ medical records and improved inventory management. These initiatives may complicate the design, development and implementation processes on a massive scale. For this purpose, ontology-based multidimensional data warehousing and mining are proposed for physical and logical organization of heterogeneous patients’ and medical professional’s data. As shown in Figure 1, different domain ontologies are modelled. The methodologies ensure that multidimensional data located in a centralized pool guarantee the cost savings and quality care programs at local and global-centers.

Bottom Line: In addition to rigor on data mining and visualization, an added focus is on values of interpretation of data views, from processed full-bodied diagnosis, subsequent prescription and appropriate medications.The proposed methodology, is a robust back-end application, for web-based patient-doctor consultations and e-Health care management systems through which, billions of dollars spent on medical services, can be saved, in addition to improving quality of life and average life span of a person.Government health departments and agencies, private and government medical practitioners including social welfare organizations are typical users of these systems.

View Article: PubMed Central - PubMed

Affiliation: School of Information Systems, CBS, Curtin University, Perth, 6102 WA, Australia. shastri.nimmagadda2011@gmail.com.

ABSTRACT
Authors focus on ontology-based multidimensional data warehousing and mining methodologies, addressing various issues on organizing, reporting and documenting diabetic cases and their associated ailments, including causalities. Map and other diagnostic data views, depicting similarity and comparison of attributes, extracted from warehouses, are used for understanding the ailments, based on gender, age, geography, food-habits and other hereditary event attributes. In addition to rigor on data mining and visualization, an added focus is on values of interpretation of data views, from processed full-bodied diagnosis, subsequent prescription and appropriate medications. The proposed methodology, is a robust back-end application, for web-based patient-doctor consultations and e-Health care management systems through which, billions of dollars spent on medical services, can be saved, in addition to improving quality of life and average life span of a person. Government health departments and agencies, private and government medical practitioners including social welfare organizations are typical users of these systems.

Show MeSH
Related in: MedlinePlus