Limits...
Age-related changes in attentional control across adolescence: how does this impact emotion regulation capacities?

Cohen Kadosh K, Heathcote LC, Lau JY - Front Psychol (2014)

Bottom Line: Moreover, we found that across all groups, adolescents with higher trait anxiety exhibited attentional avoidance of all faces, which facilitated relatively better performance on the primary task.These differences in reaction time emerged in the context of comparable accuracy level in the primary task across age-groups.This may affect learning about the environment and the acquisition of behavioral response patterns in the social world.

View Article: PubMed Central - PubMed

Affiliation: Department of Experimental Psychology, University of Oxford Oxford, UK.

ABSTRACT
This study set out to establish the novel use of the go/no-go Overlap task for investigating the role of attentional control capacities in the processing of emotional expressions across different age-groups within adolescence: at the onset of adolescence (11-12 year-olds) and toward the end of adolescence (17-18 year-olds). We also looked at how attentional control in the processing of fearful, happy, and neutral expressions relates to individual differences in trait anxiety in these adolescent groups. We were able to show that younger adolescents, but not older adolescents had more difficulties with attention control in the presence of all faces, but particularly in the presence of fearful faces. Moreover, we found that across all groups, adolescents with higher trait anxiety exhibited attentional avoidance of all faces, which facilitated relatively better performance on the primary task. These differences in reaction time emerged in the context of comparable accuracy level in the primary task across age-groups. Our results contribute to our understanding of how attentional control abilities to faces but in particular fearful expressions may mature across adolescence. This may affect learning about the environment and the acquisition of behavioral response patterns in the social world.

No MeSH data available.


Related in: MedlinePlus

Two example trials from the Overlap task. The central fixation cross was green on go trials or red on no-go trials. The horizontal target line was equally likely to occur on the left or the right side of the face, with the vertical line always appearing on the opposite side.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3921606&req=5

Figure 1: Two example trials from the Overlap task. The central fixation cross was green on go trials or red on no-go trials. The horizontal target line was equally likely to occur on the left or the right side of the face, with the vertical line always appearing on the opposite side.

Mentions: Each trial began with a central black fixation cross on a white background, being presented for 750 ms. The fixation cross was then replaced for 250 ms by the face + target stimulus, with a red or green fixation cross super-imposed onto a face flanked by two peripheral black lines. The color of the fixation cross indicated whether the trial was a go trial (green color) or a no-go trial (red color). During the go trials, the participant's task was to indicate which of the two lines on either side of the face was presented horizontally. Participants were instructed to indicate the location of the target stimulus via a button press on a keyboard, with the key for the letter “L” corresponding to a target on the right side of the face and the key for the letter “A” corresponding to a target on the left side of the face. During no-go trials, participants were instructed not to respond and to wait for the next trial to begin. The face + target stimulus was followed by a white screen with black fixation cross, which was displayed for 3000 ms, or until a response was registered (see also Figure 1). Each session began with 12 practice trials (6 go trials, 6 no-go trials), with each emotional expression being shown 4 times. The practice was followed by 4 blocks of 36 trials with a ratio of 2:1 go (24) to no-go (12) trials, with each facial expression (fearful/neutral/happy) being shown an equal number of times in the trials. Additionally, we created three pseudo-randomized variations of the task to ensure that each emotional expression and trial type varied systematically throughout the blocks. Participants were encouraged to take self-paced breaks in-between testing blocks. Reaction times (RTs) to go trials formed our primary dependent measure and only RTs within a time range of 150–3000 ms post stimulus presentation were included in the analyses (this range covered at least 75% of all trials for each participant). We note that we chose a cut-off of 3000 ms post stimulus presentation, to avoid including responses that happened at the beginning of the subsequent trial. A second independent measure was accuracy to go trials. Finally, as a secondary aim, we also investigated accuracy rates during no-go trials (i.e., the correct inhibition of a motor response) to examine whether there were age group or anxiety-linked differences in response inhibition.


Age-related changes in attentional control across adolescence: how does this impact emotion regulation capacities?

Cohen Kadosh K, Heathcote LC, Lau JY - Front Psychol (2014)

Two example trials from the Overlap task. The central fixation cross was green on go trials or red on no-go trials. The horizontal target line was equally likely to occur on the left or the right side of the face, with the vertical line always appearing on the opposite side.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3921606&req=5

Figure 1: Two example trials from the Overlap task. The central fixation cross was green on go trials or red on no-go trials. The horizontal target line was equally likely to occur on the left or the right side of the face, with the vertical line always appearing on the opposite side.
Mentions: Each trial began with a central black fixation cross on a white background, being presented for 750 ms. The fixation cross was then replaced for 250 ms by the face + target stimulus, with a red or green fixation cross super-imposed onto a face flanked by two peripheral black lines. The color of the fixation cross indicated whether the trial was a go trial (green color) or a no-go trial (red color). During the go trials, the participant's task was to indicate which of the two lines on either side of the face was presented horizontally. Participants were instructed to indicate the location of the target stimulus via a button press on a keyboard, with the key for the letter “L” corresponding to a target on the right side of the face and the key for the letter “A” corresponding to a target on the left side of the face. During no-go trials, participants were instructed not to respond and to wait for the next trial to begin. The face + target stimulus was followed by a white screen with black fixation cross, which was displayed for 3000 ms, or until a response was registered (see also Figure 1). Each session began with 12 practice trials (6 go trials, 6 no-go trials), with each emotional expression being shown 4 times. The practice was followed by 4 blocks of 36 trials with a ratio of 2:1 go (24) to no-go (12) trials, with each facial expression (fearful/neutral/happy) being shown an equal number of times in the trials. Additionally, we created three pseudo-randomized variations of the task to ensure that each emotional expression and trial type varied systematically throughout the blocks. Participants were encouraged to take self-paced breaks in-between testing blocks. Reaction times (RTs) to go trials formed our primary dependent measure and only RTs within a time range of 150–3000 ms post stimulus presentation were included in the analyses (this range covered at least 75% of all trials for each participant). We note that we chose a cut-off of 3000 ms post stimulus presentation, to avoid including responses that happened at the beginning of the subsequent trial. A second independent measure was accuracy to go trials. Finally, as a secondary aim, we also investigated accuracy rates during no-go trials (i.e., the correct inhibition of a motor response) to examine whether there were age group or anxiety-linked differences in response inhibition.

Bottom Line: Moreover, we found that across all groups, adolescents with higher trait anxiety exhibited attentional avoidance of all faces, which facilitated relatively better performance on the primary task.These differences in reaction time emerged in the context of comparable accuracy level in the primary task across age-groups.This may affect learning about the environment and the acquisition of behavioral response patterns in the social world.

View Article: PubMed Central - PubMed

Affiliation: Department of Experimental Psychology, University of Oxford Oxford, UK.

ABSTRACT
This study set out to establish the novel use of the go/no-go Overlap task for investigating the role of attentional control capacities in the processing of emotional expressions across different age-groups within adolescence: at the onset of adolescence (11-12 year-olds) and toward the end of adolescence (17-18 year-olds). We also looked at how attentional control in the processing of fearful, happy, and neutral expressions relates to individual differences in trait anxiety in these adolescent groups. We were able to show that younger adolescents, but not older adolescents had more difficulties with attention control in the presence of all faces, but particularly in the presence of fearful faces. Moreover, we found that across all groups, adolescents with higher trait anxiety exhibited attentional avoidance of all faces, which facilitated relatively better performance on the primary task. These differences in reaction time emerged in the context of comparable accuracy level in the primary task across age-groups. Our results contribute to our understanding of how attentional control abilities to faces but in particular fearful expressions may mature across adolescence. This may affect learning about the environment and the acquisition of behavioral response patterns in the social world.

No MeSH data available.


Related in: MedlinePlus