Limits...
Real-time FMRI neurofeedback training of amygdala activity in patients with major depressive disorder.

Young KD, Zotev V, Phillips R, Misaki M, Yuan H, Drevets WC, Bodurka J - PLoS ONE (2014)

Bottom Line: Significant pre-post scan decreases in anxiety ratings and increases in happiness ratings were evident in the experimental versus control group.A whole brain analysis showed that during the transfer run, participants in the experimental group had increased activity compared to the control group in left superior temporal gyrus and temporal polar cortex, and right thalamus.Using rtfMRI-nf from the left amygdala during recall of positive AMs, depressed subjects were able to self-regulate their amygdala response, resulting in improved mood.

View Article: PubMed Central - PubMed

Affiliation: Laureate Institute for Brain Research, Tulsa, Oklahoma, United States of America.

ABSTRACT

Background: Amygdala hemodynamic responses to positive stimuli are attenuated in major depressive disorder (MDD), and normalize with remission. Real-time functional MRI neurofeedback (rtfMRI-nf) offers a non-invasive method to modulate this regional activity. We examined whether depressed participants can use rtfMRI-nf to enhance amygdala responses to positive autobiographical memories, and whether this ability alters symptom severity.

Methods: Unmedicated MDD subjects were assigned to receive rtfMRI-nf from either left amygdala (LA; experimental group, n = 14) or the horizontal segment of the intraparietal sulcus (HIPS; control group, n = 7) and instructed to contemplate happy autobiographical memories (AMs) to raise the level of a bar representing the hemodynamic signal from the target region to a target level. This 40s Happy condition alternated with 40s blocks of rest and counting backwards. A final Transfer run without neurofeedback information was included.

Results: Participants in the experimental group upregulated their amygdala responses during positive AM recall. Significant pre-post scan decreases in anxiety ratings and increases in happiness ratings were evident in the experimental versus control group. A whole brain analysis showed that during the transfer run, participants in the experimental group had increased activity compared to the control group in left superior temporal gyrus and temporal polar cortex, and right thalamus.

Conclusions: Using rtfMRI-nf from the left amygdala during recall of positive AMs, depressed subjects were able to self-regulate their amygdala response, resulting in improved mood. Results from this proof-of-concept study suggest that rtfMRI-nf training with positive AM recall holds potential as a novel therapeutic approach in the treatment of depression.

Show MeSH

Related in: MedlinePlus

Percent BOLD Signal Change for each ROI, run, and group.Mean percent BOLD signal change for the Happy – Rest condition for each experimental run for the left amygdala (LA; panels A, B, C), right amygdala (RA; panels D, E, F), and horizontal segment of the intraparietal sulcus (HIPS; panels G, H, I) for the LA rtfMRI-nf group (panels A, D, G), HIPS rtfMRI-nf group (panels B, E, H), and for the difference between the LA and HIPS rtfMRI-nf groups (C, F, I). Error bars indicate +/− one standard error of the mean. * indicates a significant difference from 0 at p<0.05. * indicates a significant difference from 0 at p<0.10. # indicates a significant difference from the experimental group at p<0.05.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3921228&req=5

pone-0088785-g002: Percent BOLD Signal Change for each ROI, run, and group.Mean percent BOLD signal change for the Happy – Rest condition for each experimental run for the left amygdala (LA; panels A, B, C), right amygdala (RA; panels D, E, F), and horizontal segment of the intraparietal sulcus (HIPS; panels G, H, I) for the LA rtfMRI-nf group (panels A, D, G), HIPS rtfMRI-nf group (panels B, E, H), and for the difference between the LA and HIPS rtfMRI-nf groups (C, F, I). Error bars indicate +/− one standard error of the mean. * indicates a significant difference from 0 at p<0.05. * indicates a significant difference from 0 at p<0.10. # indicates a significant difference from the experimental group at p<0.05.

Mentions: Results of the neurofeedback experiment based on the ROI analysis of BOLD data appear in Figure 2. A Training (PR, R1, R2, R3, TR) x ROI (LA, RA, HIPS) x Group (Experimental, Control) repeated measures ANOVA for Happy-Rest revealed a main effect of ROI (F(2,38) = 6.00, p = 0.005), an ROI x Group interaction (F(2,38 = 3.93, p = 0.02), and a significant ROI x Training x Group interaction (F(4,60) = 2.66, p = 0.045). These results indicate that the experimental and control groups differed in neurofeedback training effects on the BOLD signal based on the specific target region.


Real-time FMRI neurofeedback training of amygdala activity in patients with major depressive disorder.

Young KD, Zotev V, Phillips R, Misaki M, Yuan H, Drevets WC, Bodurka J - PLoS ONE (2014)

Percent BOLD Signal Change for each ROI, run, and group.Mean percent BOLD signal change for the Happy – Rest condition for each experimental run for the left amygdala (LA; panels A, B, C), right amygdala (RA; panels D, E, F), and horizontal segment of the intraparietal sulcus (HIPS; panels G, H, I) for the LA rtfMRI-nf group (panels A, D, G), HIPS rtfMRI-nf group (panels B, E, H), and for the difference between the LA and HIPS rtfMRI-nf groups (C, F, I). Error bars indicate +/− one standard error of the mean. * indicates a significant difference from 0 at p<0.05. * indicates a significant difference from 0 at p<0.10. # indicates a significant difference from the experimental group at p<0.05.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3921228&req=5

pone-0088785-g002: Percent BOLD Signal Change for each ROI, run, and group.Mean percent BOLD signal change for the Happy – Rest condition for each experimental run for the left amygdala (LA; panels A, B, C), right amygdala (RA; panels D, E, F), and horizontal segment of the intraparietal sulcus (HIPS; panels G, H, I) for the LA rtfMRI-nf group (panels A, D, G), HIPS rtfMRI-nf group (panels B, E, H), and for the difference between the LA and HIPS rtfMRI-nf groups (C, F, I). Error bars indicate +/− one standard error of the mean. * indicates a significant difference from 0 at p<0.05. * indicates a significant difference from 0 at p<0.10. # indicates a significant difference from the experimental group at p<0.05.
Mentions: Results of the neurofeedback experiment based on the ROI analysis of BOLD data appear in Figure 2. A Training (PR, R1, R2, R3, TR) x ROI (LA, RA, HIPS) x Group (Experimental, Control) repeated measures ANOVA for Happy-Rest revealed a main effect of ROI (F(2,38) = 6.00, p = 0.005), an ROI x Group interaction (F(2,38 = 3.93, p = 0.02), and a significant ROI x Training x Group interaction (F(4,60) = 2.66, p = 0.045). These results indicate that the experimental and control groups differed in neurofeedback training effects on the BOLD signal based on the specific target region.

Bottom Line: Significant pre-post scan decreases in anxiety ratings and increases in happiness ratings were evident in the experimental versus control group.A whole brain analysis showed that during the transfer run, participants in the experimental group had increased activity compared to the control group in left superior temporal gyrus and temporal polar cortex, and right thalamus.Using rtfMRI-nf from the left amygdala during recall of positive AMs, depressed subjects were able to self-regulate their amygdala response, resulting in improved mood.

View Article: PubMed Central - PubMed

Affiliation: Laureate Institute for Brain Research, Tulsa, Oklahoma, United States of America.

ABSTRACT

Background: Amygdala hemodynamic responses to positive stimuli are attenuated in major depressive disorder (MDD), and normalize with remission. Real-time functional MRI neurofeedback (rtfMRI-nf) offers a non-invasive method to modulate this regional activity. We examined whether depressed participants can use rtfMRI-nf to enhance amygdala responses to positive autobiographical memories, and whether this ability alters symptom severity.

Methods: Unmedicated MDD subjects were assigned to receive rtfMRI-nf from either left amygdala (LA; experimental group, n = 14) or the horizontal segment of the intraparietal sulcus (HIPS; control group, n = 7) and instructed to contemplate happy autobiographical memories (AMs) to raise the level of a bar representing the hemodynamic signal from the target region to a target level. This 40s Happy condition alternated with 40s blocks of rest and counting backwards. A final Transfer run without neurofeedback information was included.

Results: Participants in the experimental group upregulated their amygdala responses during positive AM recall. Significant pre-post scan decreases in anxiety ratings and increases in happiness ratings were evident in the experimental versus control group. A whole brain analysis showed that during the transfer run, participants in the experimental group had increased activity compared to the control group in left superior temporal gyrus and temporal polar cortex, and right thalamus.

Conclusions: Using rtfMRI-nf from the left amygdala during recall of positive AMs, depressed subjects were able to self-regulate their amygdala response, resulting in improved mood. Results from this proof-of-concept study suggest that rtfMRI-nf training with positive AM recall holds potential as a novel therapeutic approach in the treatment of depression.

Show MeSH
Related in: MedlinePlus