Limits...
Manual control age and sex differences in 4 to 11 year old children.

Flatters I, Hill LJ, Williams JH, Barber SE, Mon-Williams M - PLoS ONE (2014)

Bottom Line: A small but reliable sex difference was found in tracing skill, with girls showing a slightly higher level of performance than boys irrespective of age.Overall, the findings suggest that prepubescent girls are more likely to have superior manual control abilities for performing novel tasks.However, these small population differences do not suggest that the sexes require different educational support whilst developing their manual skills.

View Article: PubMed Central - PubMed

Affiliation: Institute of Psychological Sciences, University of Leeds, Leeds, West Yorkshire, United Kingdom.

ABSTRACT
To what degree does being male or female influence the development of manual skills in pre-pubescent children? This question is important because of the emphasis placed on developing important new manual skills during this period of a child's education (e.g. writing, drawing, using computers). We investigated age and sex-differences in the ability of 422 children to control a handheld stylus. A task battery deployed using tablet PC technology presented interactive visual targets on a computer screen whilst simultaneously recording participant's objective kinematic responses, via their interactions with the on-screen stimuli using the handheld stylus. The battery required children use the stylus to: (i) make a series of aiming movements, (ii) trace a series of abstract shapes and (iii) track a moving object. The tasks were not familiar to the children, allowing measurement of a general ability that might be meaningfully labelled 'manual control', whilst minimising culturally determined differences in experience (as much as possible). A reliable interaction between sex and age was found on the aiming task, with girls' movement times being faster than boys in younger age groups (e.g. 4-5 years) but with this pattern reversing in older children (10-11 years). The improved performance in older boys on the aiming task is consistent with prior evidence of a male advantage for gross-motor aiming tasks, which begins to emerge during adolescence. A small but reliable sex difference was found in tracing skill, with girls showing a slightly higher level of performance than boys irrespective of age. There were no reliable sex differences between boys and girls on the tracking task. Overall, the findings suggest that prepubescent girls are more likely to have superior manual control abilities for performing novel tasks. However, these small population differences do not suggest that the sexes require different educational support whilst developing their manual skills.

Show MeSH

Related in: MedlinePlus

Line-graph of reciprocal movement time (MT) by Age-Group, Sex and Experimental Condition.Reciprocal MT (sec−1) is a measure of average time to move from one target to the next in a serial aiming task. In normal Baseline and Embedded-Baseline trials Female participants had a statistically significant advantage over males in the younger age-groups, with this crossing over in the older age-groups (i.e. no sex differences or a male advantage dependent on age-group and Condition). Meanwhile, no significant differences between sexes were observed, irrespective of age, for ‘Jump’ aiming movements that required additional online corrections. This was reflected in statistical analysis finding a significant 3-way interactions between Age-Group, Sex and Condition (p<.05). Note: Point estimates and associated 95% confidence Intervals for each sex group within an age-group have been artificially moved on the horizontal axis so that they display side-by-side, preventing overlaps obscuring interpretation.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3921207&req=5

pone-0088692-g003: Line-graph of reciprocal movement time (MT) by Age-Group, Sex and Experimental Condition.Reciprocal MT (sec−1) is a measure of average time to move from one target to the next in a serial aiming task. In normal Baseline and Embedded-Baseline trials Female participants had a statistically significant advantage over males in the younger age-groups, with this crossing over in the older age-groups (i.e. no sex differences or a male advantage dependent on age-group and Condition). Meanwhile, no significant differences between sexes were observed, irrespective of age, for ‘Jump’ aiming movements that required additional online corrections. This was reflected in statistical analysis finding a significant 3-way interactions between Age-Group, Sex and Condition (p<.05). Note: Point estimates and associated 95% confidence Intervals for each sex group within an age-group have been artificially moved on the horizontal axis so that they display side-by-side, preventing overlaps obscuring interpretation.

Mentions: One participant had only partial data recorded for the Jump condition and therefore their responses were excluded from this portion of the analyses. For the remainder of the sample (n = 421), MLMs of the reciprocal MT outcome revealed a significant 3-way interaction (depicted in Figure 3) for: Age Band × Sex × Response Type, (χ2(6) = 14.79; p = .022). Subordinate main effects for Age Band and Response Type and 2-way interactions for Sex × Age Band and Age Band × Response Type were also significant (all p<.008). All remaining main effects and interactions were non-significant (p>.857). Figure 3 shows evidence of sex differences arising in MT during Baseline and Embedded-Baseline trials but not during ‘jump’ events. In both these conditions a similar pattern is shown: a consistent female advantage in the youngest two age groups (4–5 and 6–7 year olds) which shows signs of reversing with age. In the older two age groups (8–9 and 10–11 year olds) there was either no significant sex difference within age-group or a significant male advantage. Table 5 investigates the magnitude of the sex-differences observed within this interaction, presenting descriptive statistics for male and female performance within each age-band on each condition. The corresponding effect-size for these mean differences indicate sex-differences constitute a ‘Small’ effect in terms of their magnitude (i.e. 0.2<d<0.5).


Manual control age and sex differences in 4 to 11 year old children.

Flatters I, Hill LJ, Williams JH, Barber SE, Mon-Williams M - PLoS ONE (2014)

Line-graph of reciprocal movement time (MT) by Age-Group, Sex and Experimental Condition.Reciprocal MT (sec−1) is a measure of average time to move from one target to the next in a serial aiming task. In normal Baseline and Embedded-Baseline trials Female participants had a statistically significant advantage over males in the younger age-groups, with this crossing over in the older age-groups (i.e. no sex differences or a male advantage dependent on age-group and Condition). Meanwhile, no significant differences between sexes were observed, irrespective of age, for ‘Jump’ aiming movements that required additional online corrections. This was reflected in statistical analysis finding a significant 3-way interactions between Age-Group, Sex and Condition (p<.05). Note: Point estimates and associated 95% confidence Intervals for each sex group within an age-group have been artificially moved on the horizontal axis so that they display side-by-side, preventing overlaps obscuring interpretation.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3921207&req=5

pone-0088692-g003: Line-graph of reciprocal movement time (MT) by Age-Group, Sex and Experimental Condition.Reciprocal MT (sec−1) is a measure of average time to move from one target to the next in a serial aiming task. In normal Baseline and Embedded-Baseline trials Female participants had a statistically significant advantage over males in the younger age-groups, with this crossing over in the older age-groups (i.e. no sex differences or a male advantage dependent on age-group and Condition). Meanwhile, no significant differences between sexes were observed, irrespective of age, for ‘Jump’ aiming movements that required additional online corrections. This was reflected in statistical analysis finding a significant 3-way interactions between Age-Group, Sex and Condition (p<.05). Note: Point estimates and associated 95% confidence Intervals for each sex group within an age-group have been artificially moved on the horizontal axis so that they display side-by-side, preventing overlaps obscuring interpretation.
Mentions: One participant had only partial data recorded for the Jump condition and therefore their responses were excluded from this portion of the analyses. For the remainder of the sample (n = 421), MLMs of the reciprocal MT outcome revealed a significant 3-way interaction (depicted in Figure 3) for: Age Band × Sex × Response Type, (χ2(6) = 14.79; p = .022). Subordinate main effects for Age Band and Response Type and 2-way interactions for Sex × Age Band and Age Band × Response Type were also significant (all p<.008). All remaining main effects and interactions were non-significant (p>.857). Figure 3 shows evidence of sex differences arising in MT during Baseline and Embedded-Baseline trials but not during ‘jump’ events. In both these conditions a similar pattern is shown: a consistent female advantage in the youngest two age groups (4–5 and 6–7 year olds) which shows signs of reversing with age. In the older two age groups (8–9 and 10–11 year olds) there was either no significant sex difference within age-group or a significant male advantage. Table 5 investigates the magnitude of the sex-differences observed within this interaction, presenting descriptive statistics for male and female performance within each age-band on each condition. The corresponding effect-size for these mean differences indicate sex-differences constitute a ‘Small’ effect in terms of their magnitude (i.e. 0.2<d<0.5).

Bottom Line: A small but reliable sex difference was found in tracing skill, with girls showing a slightly higher level of performance than boys irrespective of age.Overall, the findings suggest that prepubescent girls are more likely to have superior manual control abilities for performing novel tasks.However, these small population differences do not suggest that the sexes require different educational support whilst developing their manual skills.

View Article: PubMed Central - PubMed

Affiliation: Institute of Psychological Sciences, University of Leeds, Leeds, West Yorkshire, United Kingdom.

ABSTRACT
To what degree does being male or female influence the development of manual skills in pre-pubescent children? This question is important because of the emphasis placed on developing important new manual skills during this period of a child's education (e.g. writing, drawing, using computers). We investigated age and sex-differences in the ability of 422 children to control a handheld stylus. A task battery deployed using tablet PC technology presented interactive visual targets on a computer screen whilst simultaneously recording participant's objective kinematic responses, via their interactions with the on-screen stimuli using the handheld stylus. The battery required children use the stylus to: (i) make a series of aiming movements, (ii) trace a series of abstract shapes and (iii) track a moving object. The tasks were not familiar to the children, allowing measurement of a general ability that might be meaningfully labelled 'manual control', whilst minimising culturally determined differences in experience (as much as possible). A reliable interaction between sex and age was found on the aiming task, with girls' movement times being faster than boys in younger age groups (e.g. 4-5 years) but with this pattern reversing in older children (10-11 years). The improved performance in older boys on the aiming task is consistent with prior evidence of a male advantage for gross-motor aiming tasks, which begins to emerge during adolescence. A small but reliable sex difference was found in tracing skill, with girls showing a slightly higher level of performance than boys irrespective of age. There were no reliable sex differences between boys and girls on the tracking task. Overall, the findings suggest that prepubescent girls are more likely to have superior manual control abilities for performing novel tasks. However, these small population differences do not suggest that the sexes require different educational support whilst developing their manual skills.

Show MeSH
Related in: MedlinePlus