Limits...
Proteomic approaches for studying alcoholism and alcohol-induced organ damage.

Hiller-Sturmhöfel S, Sobin J, Mayfield RD - Alcohol Res Health (2008)

Bottom Line: These studies have identified proteins in various brain regions whose expression is affected by alcohol.Other investigators have used proteomic approaches to identify proteins that could serve as potential biomarkers of alcohol use.Finally, interaction proteomic analyses have begun to identify proteins involved in several nerve signaling networks in the brain, which then can serve as targets for further studies on alcohol's effects.

View Article: PubMed Central - PubMed

Affiliation: CSR, Incorporated, Arlington, Virginia.

ABSTRACT
Proteomics research is concerned with the analysis of all proteins found in an organism, tissue, cell type, or cellular structure. The shotgun proteomic approach, which involves two-dimensional gel electrophoresis or liquid chromatography combined with mass spectrometry (MS), is used to identify novel proteins affected by alcohol. More targeted analyses study protein-protein interactions using such techniques as the yeast two-hybrid system, affinity chromatography, or immunoprecipitation. Finally, proteomic strategies can be combined with genomic research findings using computer analyses (i.e., in silico). All of these approaches have been used in the alcohol field. These studies have identified proteins in various brain regions whose expression is affected by alcohol. Other investigators have used proteomic approaches to identify proteins that could serve as potential biomarkers of alcohol use. Finally, interaction proteomic analyses have begun to identify proteins involved in several nerve signaling networks in the brain, which then can serve as targets for further studies on alcohol's effects. Future proteomic studies likely will shed more light on the mechanisms underlying alcohol's actions on the body.

Show MeSH

Related in: MedlinePlus

Schematic representation of the yeast two-hybrid screen system. This strategy is based on the fact that certain proteins regulating gene expression in yeast and other higher organisms require two functional parts—a DNA-binding domain and an activating domain—to be fully active and activate the expression of an easily detectable reporter. For this approach, a known “bait” protein is fused to the DNA-binding domain of a yeast transcription factor. The activating domain of that transcription factor is fused to test proteins from a given cell or tissue. The fused test proteins then are mixed with the fused bait. If one of the test proteins interacts with the bait, the DNA-binding and activating domains of the transcription factor are brought together and can stimulate expression of the reporter gene.
© Copyright Policy - public-domain
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3860448&req=5

f2-arh-31-1-36: Schematic representation of the yeast two-hybrid screen system. This strategy is based on the fact that certain proteins regulating gene expression in yeast and other higher organisms require two functional parts—a DNA-binding domain and an activating domain—to be fully active and activate the expression of an easily detectable reporter. For this approach, a known “bait” protein is fused to the DNA-binding domain of a yeast transcription factor. The activating domain of that transcription factor is fused to test proteins from a given cell or tissue. The fused test proteins then are mixed with the fused bait. If one of the test proteins interacts with the bait, the DNA-binding and activating domains of the transcription factor are brought together and can stimulate expression of the reporter gene.

Mentions: Only both domains together can activate expression of a gene. In the yeast two-hybrid approach, a known bait protein is fused through genetic engineering methods to the DNA-binding domain of a yeast transcription factor. The activating domain of that transcription factor, through a series of genetic manipulations, is fused to a whole battery of test proteins from a given cell or tissue. The test proteins fused to the activating domain then are mixed with the bait protein fused to the DNA-binding domain. If one of the test proteins interacts with the bait, the DNA-binding and activating domains of the transcription factor are brought so close together that they become active and stimulate expression of a reporter gene that can easily be detected (figure 2). The test protein that interacted with the bait then can be isolated and studied further.


Proteomic approaches for studying alcoholism and alcohol-induced organ damage.

Hiller-Sturmhöfel S, Sobin J, Mayfield RD - Alcohol Res Health (2008)

Schematic representation of the yeast two-hybrid screen system. This strategy is based on the fact that certain proteins regulating gene expression in yeast and other higher organisms require two functional parts—a DNA-binding domain and an activating domain—to be fully active and activate the expression of an easily detectable reporter. For this approach, a known “bait” protein is fused to the DNA-binding domain of a yeast transcription factor. The activating domain of that transcription factor is fused to test proteins from a given cell or tissue. The fused test proteins then are mixed with the fused bait. If one of the test proteins interacts with the bait, the DNA-binding and activating domains of the transcription factor are brought together and can stimulate expression of the reporter gene.
© Copyright Policy - public-domain
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3860448&req=5

f2-arh-31-1-36: Schematic representation of the yeast two-hybrid screen system. This strategy is based on the fact that certain proteins regulating gene expression in yeast and other higher organisms require two functional parts—a DNA-binding domain and an activating domain—to be fully active and activate the expression of an easily detectable reporter. For this approach, a known “bait” protein is fused to the DNA-binding domain of a yeast transcription factor. The activating domain of that transcription factor is fused to test proteins from a given cell or tissue. The fused test proteins then are mixed with the fused bait. If one of the test proteins interacts with the bait, the DNA-binding and activating domains of the transcription factor are brought together and can stimulate expression of the reporter gene.
Mentions: Only both domains together can activate expression of a gene. In the yeast two-hybrid approach, a known bait protein is fused through genetic engineering methods to the DNA-binding domain of a yeast transcription factor. The activating domain of that transcription factor, through a series of genetic manipulations, is fused to a whole battery of test proteins from a given cell or tissue. The test proteins fused to the activating domain then are mixed with the bait protein fused to the DNA-binding domain. If one of the test proteins interacts with the bait, the DNA-binding and activating domains of the transcription factor are brought so close together that they become active and stimulate expression of a reporter gene that can easily be detected (figure 2). The test protein that interacted with the bait then can be isolated and studied further.

Bottom Line: These studies have identified proteins in various brain regions whose expression is affected by alcohol.Other investigators have used proteomic approaches to identify proteins that could serve as potential biomarkers of alcohol use.Finally, interaction proteomic analyses have begun to identify proteins involved in several nerve signaling networks in the brain, which then can serve as targets for further studies on alcohol's effects.

View Article: PubMed Central - PubMed

Affiliation: CSR, Incorporated, Arlington, Virginia.

ABSTRACT
Proteomics research is concerned with the analysis of all proteins found in an organism, tissue, cell type, or cellular structure. The shotgun proteomic approach, which involves two-dimensional gel electrophoresis or liquid chromatography combined with mass spectrometry (MS), is used to identify novel proteins affected by alcohol. More targeted analyses study protein-protein interactions using such techniques as the yeast two-hybrid system, affinity chromatography, or immunoprecipitation. Finally, proteomic strategies can be combined with genomic research findings using computer analyses (i.e., in silico). All of these approaches have been used in the alcohol field. These studies have identified proteins in various brain regions whose expression is affected by alcohol. Other investigators have used proteomic approaches to identify proteins that could serve as potential biomarkers of alcohol use. Finally, interaction proteomic analyses have begun to identify proteins involved in several nerve signaling networks in the brain, which then can serve as targets for further studies on alcohol's effects. Future proteomic studies likely will shed more light on the mechanisms underlying alcohol's actions on the body.

Show MeSH
Related in: MedlinePlus