Limits...
High-level expression of a novel thermostable and mannose-tolerant β-mannosidase from Thermotoga thermarum DSM 5069 in Escherichia coli.

Shi H, Huang Y, Zhang Y, Li W, Li X, Wang F - BMC Biotechnol. (2013)

Bottom Line: The results of phylogenetic analysis, amino acid alignment and biochemical properties indicate that the Tth Man5 is a novel β-mannosidase of glycoside hydrolase family 5.It displayed high tolerance to mannose, with a K(i) value of approximately 900 mM.This work provides a novel and useful β-mannosidase with high mannose tolerance, thermostability and catalytic efficiency, and these characteristics constitute a powerful tool for improving the enzymatic conversion of mannan through synergetic action with other mannan-degrading enzymes.

View Article: PubMed Central - HTML - PubMed

Affiliation: College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China. hgwf@njfu.edu.cn.

ABSTRACT

Background: Mannan is one of the primary polysaccharides in hemicellulose and is widely distributed in plants. β-Mannosidase is an important constituent of the mannan-degrading enzyme system and it plays an important role in many industrial applications, such as food, feed and pulp/paper industries as well as the production of second generation bio-fuel. Therefore, the mannose-tolerant β-mannosidase with high catalytic efficiency for bioconversion of mannan has a great potential in the fields as above.

Results: A β-mannosidase gene (Tth man5) of 1,827 bp was cloned from the extremely thermophilic bacterium Thermotoga thermarum DSM 5069 that encodes a protein containing 608 amino acid residues, and was over-expressed in Escherichia coli BL21 (DE3). The results of phylogenetic analysis, amino acid alignment and biochemical properties indicate that the Tth Man5 is a novel β-mannosidase of glycoside hydrolase family 5. The optimal activity of the Tth Man5 β-mannosidase was obtained at pH 5.5 and 85°C and was stable over a pH range of 5.0 to 8.5 and exhibited 2 h half-life at 90°C. The kinetic parameters K(m) and V(max) values for p-nitrophenyl-β-D-mannopyranoside and 1,4-β-D-mannan were 4.36±0.5 mM and 227.27±1.59 μmol min⁻¹ mg⁻¹, 58.34±1.75 mg mL⁻¹ and 285.71±10.86 μmol min⁻¹ mg⁻¹, respectively. The k(cat)/K(m) values for p-nitrophenyl-β-D-mannopyranoside and 1,4-β-D-mannan were 441.35±0.04 mM⁻¹ s⁻¹ and 41.47±1.58 s⁻¹ mg⁻¹ mL, respectively. It displayed high tolerance to mannose, with a K(i) value of approximately 900 mM.

Conclusions: This work provides a novel and useful β-mannosidase with high mannose tolerance, thermostability and catalytic efficiency, and these characteristics constitute a powerful tool for improving the enzymatic conversion of mannan through synergetic action with other mannan-degrading enzymes.

Show MeSH

Related in: MedlinePlus

Phylogentic tree resulted from analysis of β-mannosidases with 35 amino acid sequences using Maximum-Parsimony (MP) method. Numbers on nodes correspond to percentage bootstrap values for 1000 replicates.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3852774&req=5

Figure 6: Phylogentic tree resulted from analysis of β-mannosidases with 35 amino acid sequences using Maximum-Parsimony (MP) method. Numbers on nodes correspond to percentage bootstrap values for 1000 replicates.

Mentions: The phylogenetic trees generated from 35 candidate sequences were constructed to gain deeper insight into the evolutionary relationship among β-mannosidases, using the Neighbor-Joining (NJ) and Maximum-Parsimony (MP) methods. Both trees displayed almost the same topological structures (NJ tree was not shown). It revealed the presence of three well-supported clades and each clade consisting of a separated monophyletic group (Figure 6). Clade I, Clade II and Clade III consisted of the GHF2, GHF5 and GHF1 β-mannosidases, respectively. From the phylogenetic trees, it is obvious that there are two subclades in Clade II. Tth Man5 β-mannosidase from T. thermarum showed an apparently distant relationship with the GHF5 β-mannosidases from the same genus. Therefore, it was presumed that the biochemical properties of Tth Man5 β-mannosidase might differ from the same genus β-mannosidases. This was confirmed by the experiment results shown in Table 4.


High-level expression of a novel thermostable and mannose-tolerant β-mannosidase from Thermotoga thermarum DSM 5069 in Escherichia coli.

Shi H, Huang Y, Zhang Y, Li W, Li X, Wang F - BMC Biotechnol. (2013)

Phylogentic tree resulted from analysis of β-mannosidases with 35 amino acid sequences using Maximum-Parsimony (MP) method. Numbers on nodes correspond to percentage bootstrap values for 1000 replicates.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3852774&req=5

Figure 6: Phylogentic tree resulted from analysis of β-mannosidases with 35 amino acid sequences using Maximum-Parsimony (MP) method. Numbers on nodes correspond to percentage bootstrap values for 1000 replicates.
Mentions: The phylogenetic trees generated from 35 candidate sequences were constructed to gain deeper insight into the evolutionary relationship among β-mannosidases, using the Neighbor-Joining (NJ) and Maximum-Parsimony (MP) methods. Both trees displayed almost the same topological structures (NJ tree was not shown). It revealed the presence of three well-supported clades and each clade consisting of a separated monophyletic group (Figure 6). Clade I, Clade II and Clade III consisted of the GHF2, GHF5 and GHF1 β-mannosidases, respectively. From the phylogenetic trees, it is obvious that there are two subclades in Clade II. Tth Man5 β-mannosidase from T. thermarum showed an apparently distant relationship with the GHF5 β-mannosidases from the same genus. Therefore, it was presumed that the biochemical properties of Tth Man5 β-mannosidase might differ from the same genus β-mannosidases. This was confirmed by the experiment results shown in Table 4.

Bottom Line: The results of phylogenetic analysis, amino acid alignment and biochemical properties indicate that the Tth Man5 is a novel β-mannosidase of glycoside hydrolase family 5.It displayed high tolerance to mannose, with a K(i) value of approximately 900 mM.This work provides a novel and useful β-mannosidase with high mannose tolerance, thermostability and catalytic efficiency, and these characteristics constitute a powerful tool for improving the enzymatic conversion of mannan through synergetic action with other mannan-degrading enzymes.

View Article: PubMed Central - HTML - PubMed

Affiliation: College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China. hgwf@njfu.edu.cn.

ABSTRACT

Background: Mannan is one of the primary polysaccharides in hemicellulose and is widely distributed in plants. β-Mannosidase is an important constituent of the mannan-degrading enzyme system and it plays an important role in many industrial applications, such as food, feed and pulp/paper industries as well as the production of second generation bio-fuel. Therefore, the mannose-tolerant β-mannosidase with high catalytic efficiency for bioconversion of mannan has a great potential in the fields as above.

Results: A β-mannosidase gene (Tth man5) of 1,827 bp was cloned from the extremely thermophilic bacterium Thermotoga thermarum DSM 5069 that encodes a protein containing 608 amino acid residues, and was over-expressed in Escherichia coli BL21 (DE3). The results of phylogenetic analysis, amino acid alignment and biochemical properties indicate that the Tth Man5 is a novel β-mannosidase of glycoside hydrolase family 5. The optimal activity of the Tth Man5 β-mannosidase was obtained at pH 5.5 and 85°C and was stable over a pH range of 5.0 to 8.5 and exhibited 2 h half-life at 90°C. The kinetic parameters K(m) and V(max) values for p-nitrophenyl-β-D-mannopyranoside and 1,4-β-D-mannan were 4.36±0.5 mM and 227.27±1.59 μmol min⁻¹ mg⁻¹, 58.34±1.75 mg mL⁻¹ and 285.71±10.86 μmol min⁻¹ mg⁻¹, respectively. The k(cat)/K(m) values for p-nitrophenyl-β-D-mannopyranoside and 1,4-β-D-mannan were 441.35±0.04 mM⁻¹ s⁻¹ and 41.47±1.58 s⁻¹ mg⁻¹ mL, respectively. It displayed high tolerance to mannose, with a K(i) value of approximately 900 mM.

Conclusions: This work provides a novel and useful β-mannosidase with high mannose tolerance, thermostability and catalytic efficiency, and these characteristics constitute a powerful tool for improving the enzymatic conversion of mannan through synergetic action with other mannan-degrading enzymes.

Show MeSH
Related in: MedlinePlus