Limits...
Structural brain abnormalities in cervical dystonia.

Prell T, Peschel T, Köhler B, Bokemeyer MH, Dengler R, Günther A, Grosskreutz J - BMC Neurosci (2013)

Bottom Line: Results were correlated with UDRS, TWSTRS and disease duration.We found structural alterations in the basal ganglia; thalamus; motor cortex; premotor cortex; frontal, temporal and parietal cortices; visual system; cerebellum and brainstem of the patients with dystonia.Cervical dystonia is a multisystem disease involving several networks such as the motor, sensory and visual systems.

View Article: PubMed Central - HTML - PubMed

Affiliation: Hans-Berger Department of Neurology, Jena University Hospital, Erlanger Allee 101, 07747 Jena, Germany. tino.prell@med.uni-jena.de.

ABSTRACT

Background: Idiopathic cervical dystonia is characterized by involuntary spasms, tremors or jerks. It is not restricted to a disturbance in the basal ganglia system because non-conventional voxel-based MRI morphometry (VBM) and diffusion tensor imaging (DTI) have detected numerous regional changes in the brains of patients.In this study scans of 24 patients with cervical dystonia and 24 age-and sex-matched controls were analysed using VBM, DTI and magnetization transfer imaging (MTI) using a voxel-based approach and a region-of-interest analysis. Results were correlated with UDRS, TWSTRS and disease duration.

Results: We found structural alterations in the basal ganglia; thalamus; motor cortex; premotor cortex; frontal, temporal and parietal cortices; visual system; cerebellum and brainstem of the patients with dystonia.

Conclusions: Cervical dystonia is a multisystem disease involving several networks such as the motor, sensory and visual systems.

Show MeSH

Related in: MedlinePlus

Changes of grey matter volume in patients with dystonia compared to those in healthy controls (group comparison). VBM showed regional enhanced grey matter in the lentiform nucleus, the frontal eye fields (BA 8), and the secondary visual cortex (displayed at p = 0.001, uncorrected, extent threshold 100 voxels). Grey matter atrophy was observed in the precentral gyrus, the supplementary motor area, the somatosensory association cortex, and in the medial temporal gyrus. The color bar represents the T-score. The differences between the groups are superimposed on a standard normalized T1-weighted image. Images are shown in neurological convention.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3852757&req=5

Figure 1: Changes of grey matter volume in patients with dystonia compared to those in healthy controls (group comparison). VBM showed regional enhanced grey matter in the lentiform nucleus, the frontal eye fields (BA 8), and the secondary visual cortex (displayed at p = 0.001, uncorrected, extent threshold 100 voxels). Grey matter atrophy was observed in the precentral gyrus, the supplementary motor area, the somatosensory association cortex, and in the medial temporal gyrus. The color bar represents the T-score. The differences between the groups are superimposed on a standard normalized T1-weighted image. Images are shown in neurological convention.

Mentions: In the voxel-based whole brain analysis, the dystonia patients displayed enhanced volume bilaterally in the lentiform nucleus (left globus pallidus, right claustrum, right putamen), left frontal eye field (BA 8) and the bilateral medial surface of the occipital lobe (visual cortex, BA 17) (Figure 1). In addition, there were regions with decreased grey matter volume, particularly in the left precentral gyrus, the left supplementary motor area (BA 6), the right somatosensory association cortex (BA 7) and the left medial temporal gyrus (Table 2, Figure 1). In the white matter tissue class and CSF, no significant voxels were found.


Structural brain abnormalities in cervical dystonia.

Prell T, Peschel T, Köhler B, Bokemeyer MH, Dengler R, Günther A, Grosskreutz J - BMC Neurosci (2013)

Changes of grey matter volume in patients with dystonia compared to those in healthy controls (group comparison). VBM showed regional enhanced grey matter in the lentiform nucleus, the frontal eye fields (BA 8), and the secondary visual cortex (displayed at p = 0.001, uncorrected, extent threshold 100 voxels). Grey matter atrophy was observed in the precentral gyrus, the supplementary motor area, the somatosensory association cortex, and in the medial temporal gyrus. The color bar represents the T-score. The differences between the groups are superimposed on a standard normalized T1-weighted image. Images are shown in neurological convention.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3852757&req=5

Figure 1: Changes of grey matter volume in patients with dystonia compared to those in healthy controls (group comparison). VBM showed regional enhanced grey matter in the lentiform nucleus, the frontal eye fields (BA 8), and the secondary visual cortex (displayed at p = 0.001, uncorrected, extent threshold 100 voxels). Grey matter atrophy was observed in the precentral gyrus, the supplementary motor area, the somatosensory association cortex, and in the medial temporal gyrus. The color bar represents the T-score. The differences between the groups are superimposed on a standard normalized T1-weighted image. Images are shown in neurological convention.
Mentions: In the voxel-based whole brain analysis, the dystonia patients displayed enhanced volume bilaterally in the lentiform nucleus (left globus pallidus, right claustrum, right putamen), left frontal eye field (BA 8) and the bilateral medial surface of the occipital lobe (visual cortex, BA 17) (Figure 1). In addition, there were regions with decreased grey matter volume, particularly in the left precentral gyrus, the left supplementary motor area (BA 6), the right somatosensory association cortex (BA 7) and the left medial temporal gyrus (Table 2, Figure 1). In the white matter tissue class and CSF, no significant voxels were found.

Bottom Line: Results were correlated with UDRS, TWSTRS and disease duration.We found structural alterations in the basal ganglia; thalamus; motor cortex; premotor cortex; frontal, temporal and parietal cortices; visual system; cerebellum and brainstem of the patients with dystonia.Cervical dystonia is a multisystem disease involving several networks such as the motor, sensory and visual systems.

View Article: PubMed Central - HTML - PubMed

Affiliation: Hans-Berger Department of Neurology, Jena University Hospital, Erlanger Allee 101, 07747 Jena, Germany. tino.prell@med.uni-jena.de.

ABSTRACT

Background: Idiopathic cervical dystonia is characterized by involuntary spasms, tremors or jerks. It is not restricted to a disturbance in the basal ganglia system because non-conventional voxel-based MRI morphometry (VBM) and diffusion tensor imaging (DTI) have detected numerous regional changes in the brains of patients.In this study scans of 24 patients with cervical dystonia and 24 age-and sex-matched controls were analysed using VBM, DTI and magnetization transfer imaging (MTI) using a voxel-based approach and a region-of-interest analysis. Results were correlated with UDRS, TWSTRS and disease duration.

Results: We found structural alterations in the basal ganglia; thalamus; motor cortex; premotor cortex; frontal, temporal and parietal cortices; visual system; cerebellum and brainstem of the patients with dystonia.

Conclusions: Cervical dystonia is a multisystem disease involving several networks such as the motor, sensory and visual systems.

Show MeSH
Related in: MedlinePlus