Limits...
A best practice fall prevention exercise program to improve balance, strength / power, and psychosocial health in older adults: study protocol for a randomized controlled trial.

Gschwind YJ, Kressig RW, Lacroix A, Muehlbauer T, Pfenninger B, Granacher U - BMC Geriatr (2013)

Bottom Line: Additionally, detraining effects will be measured 12 weeks after program cessation.In addition, information regarding fall risk assessment, dose-response-relations, detraining effects, and supervision of training will be provided.Finally, practitioners, therapists, and instructors will be provided with a scientifically evaluated feasible, safe, and easy-to-administer exercise program for fall prevention.

View Article: PubMed Central - HTML - PubMed

Affiliation: Basel Mobility Center, University Hospital Basel, University Center for Medicine of Aging Basel, Schanzenstrasse 55, Basel, 4031, Switzerland. y_gschwind@bluewin.ch.

ABSTRACT

Background: With increasing age neuromuscular deficits (e.g., sarcopenia) may result in impaired physical performance and an increased risk for falls. Prominent intrinsic fall-risk factors are age-related decreases in balance and strength / power performance as well as cognitive decline. Additional studies are needed to develop specifically tailored exercise programs for older adults that can easily be implemented into clinical practice. Thus, the objective of the present trial is to assess the effects of a fall prevention program that was developed by an interdisciplinary expert panel on measures of balance, strength / power, body composition, cognition, psychosocial well-being, and falls self-efficacy in healthy older adults. Additionally, the time-related effects of detraining are tested.

Methods/design: Healthy old people (n = 54) between the age of 65 to 80 years will participate in this trial. The testing protocol comprises tests for the assessment of static / dynamic steady-state balance (i.e., Sharpened Romberg Test, instrumented gait analysis), proactive balance (i.e., Functional Reach Test; Timed Up and Go Test), reactive balance (i.e., perturbation test during bipedal stance; Push and Release Test), strength (i.e., hand grip strength test; Chair Stand Test), and power (i.e., Stair Climb Power Test; countermovement jump). Further, body composition will be analysed using a bioelectrical impedance analysis system. In addition, questionnaires for the assessment of psychosocial (i.e., World Health Organisation Quality of Life Assessment-Bref), cognitive (i.e., Mini Mental State Examination), and fall risk determinants (i.e., Fall Efficacy Scale - International) will be included in the study protocol. Participants will be randomized into two intervention groups or the control / waiting group. After baseline measures, participants in the intervention groups will conduct a 12-week balance and strength / power exercise intervention 3 times per week, with each training session lasting 30 min. (actual training time). One intervention group will complete an extensive supervised training program, while the other intervention group will complete a short version ('3 times 3') that is home-based and controlled by weekly phone calls. Post-tests will be conducted right after the intervention period. Additionally, detraining effects will be measured 12 weeks after program cessation. The control group / waiting group will not participate in any specific intervention during the experimental period, but will receive the extensive supervised program after the experimental period.

Discussion: It is expected that particularly the supervised combination of balance and strength / power training will improve performance in variables of balance, strength / power, body composition, cognitive function, psychosocial well-being, and falls self-efficacy of older adults. In addition, information regarding fall risk assessment, dose-response-relations, detraining effects, and supervision of training will be provided. Further, training-induced health-relevant changes, such as improved performance in activities of daily living, cognitive function, and quality of life, as well as a reduced risk for falls may help to lower costs in the health care system. Finally, practitioners, therapists, and instructors will be provided with a scientifically evaluated feasible, safe, and easy-to-administer exercise program for fall prevention.

Show MeSH

Related in: MedlinePlus

Base of support during static steady-state balance. (A) bipedal stance, (B) semi-tandem stance, (C) tandem stance, (D) monopedal stance.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3852637&req=5

Figure 2: Base of support during static steady-state balance. (A) bipedal stance, (B) semi-tandem stance, (C) tandem stance, (D) monopedal stance.

Mentions: The expert panel selected balance and strength / power exercises which can be performed with one’s own bodyweight or with the help of small, low-cost exercise equipment (i.e., small weights, resistance bands, unstable surfaces). However, intensity control for strength / power exercises performed with one’s own bodyweight is more complicated compared to when using strength training machines. In this study, intensity during training will be regulated using the Borg Rating of Perceived Exertion scale (i.e., 6–20 points, maximal exertion at 20 points) [90]. According to the individual fitness level, exercises should be performed with a perceived exertion between 10 and 16 points (light to hard) during balance and strength / power training. Exercise intensity will be progressed individually using the Borg Rating of Perceived Exertion scale and varying the balance and strength / power exercises in order to sufficiently stimulate the neuromuscular system [91]. Rate of perceived exertion will be adjusted every 2 weeks by the therapist (INT1) or via phone calls (INT2). Strength / power exercises will be progressed from single to multiple joint, isometric to dynamic muscle contraction, short to long lever arm and slow to fast exercises [92]. Further details regarding the contents of the intervention program are described in Tables 1 and 2 for strength / power training, and Tables 3 and 4 for static and dynamic steady-state, proactive, and reactive balance training (see also Figures 2, 3 and 4).


A best practice fall prevention exercise program to improve balance, strength / power, and psychosocial health in older adults: study protocol for a randomized controlled trial.

Gschwind YJ, Kressig RW, Lacroix A, Muehlbauer T, Pfenninger B, Granacher U - BMC Geriatr (2013)

Base of support during static steady-state balance. (A) bipedal stance, (B) semi-tandem stance, (C) tandem stance, (D) monopedal stance.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3852637&req=5

Figure 2: Base of support during static steady-state balance. (A) bipedal stance, (B) semi-tandem stance, (C) tandem stance, (D) monopedal stance.
Mentions: The expert panel selected balance and strength / power exercises which can be performed with one’s own bodyweight or with the help of small, low-cost exercise equipment (i.e., small weights, resistance bands, unstable surfaces). However, intensity control for strength / power exercises performed with one’s own bodyweight is more complicated compared to when using strength training machines. In this study, intensity during training will be regulated using the Borg Rating of Perceived Exertion scale (i.e., 6–20 points, maximal exertion at 20 points) [90]. According to the individual fitness level, exercises should be performed with a perceived exertion between 10 and 16 points (light to hard) during balance and strength / power training. Exercise intensity will be progressed individually using the Borg Rating of Perceived Exertion scale and varying the balance and strength / power exercises in order to sufficiently stimulate the neuromuscular system [91]. Rate of perceived exertion will be adjusted every 2 weeks by the therapist (INT1) or via phone calls (INT2). Strength / power exercises will be progressed from single to multiple joint, isometric to dynamic muscle contraction, short to long lever arm and slow to fast exercises [92]. Further details regarding the contents of the intervention program are described in Tables 1 and 2 for strength / power training, and Tables 3 and 4 for static and dynamic steady-state, proactive, and reactive balance training (see also Figures 2, 3 and 4).

Bottom Line: Additionally, detraining effects will be measured 12 weeks after program cessation.In addition, information regarding fall risk assessment, dose-response-relations, detraining effects, and supervision of training will be provided.Finally, practitioners, therapists, and instructors will be provided with a scientifically evaluated feasible, safe, and easy-to-administer exercise program for fall prevention.

View Article: PubMed Central - HTML - PubMed

Affiliation: Basel Mobility Center, University Hospital Basel, University Center for Medicine of Aging Basel, Schanzenstrasse 55, Basel, 4031, Switzerland. y_gschwind@bluewin.ch.

ABSTRACT

Background: With increasing age neuromuscular deficits (e.g., sarcopenia) may result in impaired physical performance and an increased risk for falls. Prominent intrinsic fall-risk factors are age-related decreases in balance and strength / power performance as well as cognitive decline. Additional studies are needed to develop specifically tailored exercise programs for older adults that can easily be implemented into clinical practice. Thus, the objective of the present trial is to assess the effects of a fall prevention program that was developed by an interdisciplinary expert panel on measures of balance, strength / power, body composition, cognition, psychosocial well-being, and falls self-efficacy in healthy older adults. Additionally, the time-related effects of detraining are tested.

Methods/design: Healthy old people (n = 54) between the age of 65 to 80 years will participate in this trial. The testing protocol comprises tests for the assessment of static / dynamic steady-state balance (i.e., Sharpened Romberg Test, instrumented gait analysis), proactive balance (i.e., Functional Reach Test; Timed Up and Go Test), reactive balance (i.e., perturbation test during bipedal stance; Push and Release Test), strength (i.e., hand grip strength test; Chair Stand Test), and power (i.e., Stair Climb Power Test; countermovement jump). Further, body composition will be analysed using a bioelectrical impedance analysis system. In addition, questionnaires for the assessment of psychosocial (i.e., World Health Organisation Quality of Life Assessment-Bref), cognitive (i.e., Mini Mental State Examination), and fall risk determinants (i.e., Fall Efficacy Scale - International) will be included in the study protocol. Participants will be randomized into two intervention groups or the control / waiting group. After baseline measures, participants in the intervention groups will conduct a 12-week balance and strength / power exercise intervention 3 times per week, with each training session lasting 30 min. (actual training time). One intervention group will complete an extensive supervised training program, while the other intervention group will complete a short version ('3 times 3') that is home-based and controlled by weekly phone calls. Post-tests will be conducted right after the intervention period. Additionally, detraining effects will be measured 12 weeks after program cessation. The control group / waiting group will not participate in any specific intervention during the experimental period, but will receive the extensive supervised program after the experimental period.

Discussion: It is expected that particularly the supervised combination of balance and strength / power training will improve performance in variables of balance, strength / power, body composition, cognitive function, psychosocial well-being, and falls self-efficacy of older adults. In addition, information regarding fall risk assessment, dose-response-relations, detraining effects, and supervision of training will be provided. Further, training-induced health-relevant changes, such as improved performance in activities of daily living, cognitive function, and quality of life, as well as a reduced risk for falls may help to lower costs in the health care system. Finally, practitioners, therapists, and instructors will be provided with a scientifically evaluated feasible, safe, and easy-to-administer exercise program for fall prevention.

Show MeSH
Related in: MedlinePlus