Limits...
100 top-cited scientific papers in limb prosthetics.

Eshraghi A, Osman NA, Gholizadeh H, Ali S, Shadgan B - Biomed Eng Online (2013)

Bottom Line: Among the various fields, rehabilitation (47%), orthopedics (29%), and sport sciences (28%) were the most common fields of study.Top cited articles primarily dealt with lower limb prosthetics, specifically, on transtibial and transradial prosthetic limbs.Majority of the articles were experimental studies.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia. arezooeshraghi@yahoo.ca.

ABSTRACT
Research has tremendously contributed to the developments in both practical and fundamental aspects of limb prosthetics. These advancements are reflected in scientific articles, particularly in the most cited papers. This article aimed to identify the 100 top-cited articles in the field of limb prosthetics and to investigate their main characteristics. Articles related to the field of limb prosthetics and published in the Web of Knowledge database of the Institute for Scientific Information (ISI) from the period of 1980 to 2012. The 100 most cited articles in limb prosthetics were selected based on the citation index report. All types of articles except for proceedings and letters were included in the study. The study design and level of evidence were determined using Sackett's initial rules of evidence. The level of evidence was categorized either as a systematic review or meta-analysis, randomized controlled trial, cohort study, case-control study, case series, expert opinion, or design and development. The top cited articles in prosthetics were published from 1980 to 2012 with a citation range of 11 to 90 times since publication. The mean citation rate was 24.43 (SD 16.7) times. Eighty-four percent of the articles were original publications and were most commonly prospective (76%) and case series studies (67%) that used human subjects (96%) providing level 4 evidence. Among the various fields, rehabilitation (47%), orthopedics (29%), and sport sciences (28%) were the most common fields of study. The study established that studies conducted in North America and were written in English had the highest citations. Top cited articles primarily dealt with lower limb prosthetics, specifically, on transtibial and transradial prosthetic limbs. Majority of the articles were experimental studies.

Show MeSH
Distribution of the articles with regards to the levels of evidence.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC3842667&req=5

Figure 1: Distribution of the articles with regards to the levels of evidence.

Mentions: Several articles were cited more often than others because of the difference in time since publication. A citation index was also determined for each article to control this error. The citation index was defined as the mean number of citation times per year [3]. The 100 top cited articles were then identified based on the number of citations and citation index value (Additional file 1: Table S1). The articles were classified based on article specifications, such as publication date, journal name, title, authors’ names, organization, and country. The data collection method was categorized as retrospective, prospective, cross-sectional, and longitudinal. The research design was likewise defined to be qualitative, quantitative or mixed mode [11]. We categorized the papers based on anatomy, such as lower and upper limbs. For both upper and lower limb prostheses, the articles were further categorized based on the type of prosthesis, including transfemoral (TF), transtibial (TT), knee disarticulation (KD), Syme’s, and partial foot for lower limb, and shoulder disarticulation (SD), transradial (TR), transhumeral (TH), wrist disarticulation, and partial hand for upper limb. Sackett’s initial rules of evidence were used to score the articles based on their levels of evidence (Figure 1) [12].


100 top-cited scientific papers in limb prosthetics.

Eshraghi A, Osman NA, Gholizadeh H, Ali S, Shadgan B - Biomed Eng Online (2013)

Distribution of the articles with regards to the levels of evidence.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC3842667&req=5

Figure 1: Distribution of the articles with regards to the levels of evidence.
Mentions: Several articles were cited more often than others because of the difference in time since publication. A citation index was also determined for each article to control this error. The citation index was defined as the mean number of citation times per year [3]. The 100 top cited articles were then identified based on the number of citations and citation index value (Additional file 1: Table S1). The articles were classified based on article specifications, such as publication date, journal name, title, authors’ names, organization, and country. The data collection method was categorized as retrospective, prospective, cross-sectional, and longitudinal. The research design was likewise defined to be qualitative, quantitative or mixed mode [11]. We categorized the papers based on anatomy, such as lower and upper limbs. For both upper and lower limb prostheses, the articles were further categorized based on the type of prosthesis, including transfemoral (TF), transtibial (TT), knee disarticulation (KD), Syme’s, and partial foot for lower limb, and shoulder disarticulation (SD), transradial (TR), transhumeral (TH), wrist disarticulation, and partial hand for upper limb. Sackett’s initial rules of evidence were used to score the articles based on their levels of evidence (Figure 1) [12].

Bottom Line: Among the various fields, rehabilitation (47%), orthopedics (29%), and sport sciences (28%) were the most common fields of study.Top cited articles primarily dealt with lower limb prosthetics, specifically, on transtibial and transradial prosthetic limbs.Majority of the articles were experimental studies.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia. arezooeshraghi@yahoo.ca.

ABSTRACT
Research has tremendously contributed to the developments in both practical and fundamental aspects of limb prosthetics. These advancements are reflected in scientific articles, particularly in the most cited papers. This article aimed to identify the 100 top-cited articles in the field of limb prosthetics and to investigate their main characteristics. Articles related to the field of limb prosthetics and published in the Web of Knowledge database of the Institute for Scientific Information (ISI) from the period of 1980 to 2012. The 100 most cited articles in limb prosthetics were selected based on the citation index report. All types of articles except for proceedings and letters were included in the study. The study design and level of evidence were determined using Sackett's initial rules of evidence. The level of evidence was categorized either as a systematic review or meta-analysis, randomized controlled trial, cohort study, case-control study, case series, expert opinion, or design and development. The top cited articles in prosthetics were published from 1980 to 2012 with a citation range of 11 to 90 times since publication. The mean citation rate was 24.43 (SD 16.7) times. Eighty-four percent of the articles were original publications and were most commonly prospective (76%) and case series studies (67%) that used human subjects (96%) providing level 4 evidence. Among the various fields, rehabilitation (47%), orthopedics (29%), and sport sciences (28%) were the most common fields of study. The study established that studies conducted in North America and were written in English had the highest citations. Top cited articles primarily dealt with lower limb prosthetics, specifically, on transtibial and transradial prosthetic limbs. Majority of the articles were experimental studies.

Show MeSH