Limits...
Training changes processing of speech cues in older adults with hearing loss.

Anderson S, White-Schwoch T, Choi HJ, Kraus N - Front Syst Neurosci (2013)

Bottom Line: Aging results in a loss of sensory function, and the effects of hearing impairment can be especially devastating due to reduced communication ability.Importantly, changes in speech processing were accompanied by improvements in speech perception.Thus, central processing deficits associated with hearing loss may be partially remediated with training, resulting in real-life benefits for everyday communication.

View Article: PubMed Central - PubMed

Affiliation: Auditory Neuroscience Laboratory, Department of Communication Sciences and Disorders, Northwestern University Evanston, IL, USA ; Department of Communication Sciences, Northwestern University Evanston, IL, USA.

ABSTRACT
Aging results in a loss of sensory function, and the effects of hearing impairment can be especially devastating due to reduced communication ability. Older adults with hearing loss report that speech, especially in noisy backgrounds, is uncomfortably loud yet unclear. Hearing loss results in an unbalanced neural representation of speech: the slowly-varying envelope is enhanced, dominating representation in the auditory pathway and perceptual salience at the cost of the rapidly-varying fine structure. We hypothesized that older adults with hearing loss can be trained to compensate for these changes in central auditory processing through directed attention to behaviorally-relevant speech sounds. To that end, we evaluated the effects of auditory-cognitive training in older adults (ages 55-79) with normal hearing and hearing loss. After training, the auditory training group with hearing loss experienced a reduction in the neural representation of the speech envelope presented in noise, approaching levels observed in normal hearing older adults. No changes were noted in the control group. Importantly, changes in speech processing were accompanied by improvements in speech perception. Thus, central processing deficits associated with hearing loss may be partially remediated with training, resulting in real-life benefits for everyday communication.

No MeSH data available.


Related in: MedlinePlus

Pre and post-training perceptual and cognitive scores for participants with both normal hearing and hearing loss (group × session interactions). The auditory training group improved in speech-in-noise perception (A), memory (B), and attention (C), whereas there were no changes in the active control group. *p < 0.05, **p < 0.01. Error bars: ± 1 SE.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3842592&req=5

Figure 8: Pre and post-training perceptual and cognitive scores for participants with both normal hearing and hearing loss (group × session interactions). The auditory training group improved in speech-in-noise perception (A), memory (B), and attention (C), whereas there were no changes in the active control group. *p < 0.05, **p < 0.01. Error bars: ± 1 SE.

Mentions: Finally, for attention, there was a significant training group × test session interaction [F(1, 50) = 3.765, p = 0.043], with improvements in the auditory training group [F(1, 25) = 17.941, p < 0.001] but not the active control group [F(1, 24) = 0.623, p = 0.438]. In this case, there were significant improvements for both the subgroups with normal hearing [F(1, 11) = 8.182, p = 0.016] and with hearing loss of the auditory training group [F(1, 12) = 9.339, p = 0.009]. Again, there were no changes for members of either hearing subgroup of the active control group (all p's > 0.1). See Figure 8 for interaction plots of behavioral changes. Please refer to Table 2 for means and standard deviations of pre- and post-training changes in behavioral measures for the normal hearing and hearing impaired participants of the auditory training and active control, groups.


Training changes processing of speech cues in older adults with hearing loss.

Anderson S, White-Schwoch T, Choi HJ, Kraus N - Front Syst Neurosci (2013)

Pre and post-training perceptual and cognitive scores for participants with both normal hearing and hearing loss (group × session interactions). The auditory training group improved in speech-in-noise perception (A), memory (B), and attention (C), whereas there were no changes in the active control group. *p < 0.05, **p < 0.01. Error bars: ± 1 SE.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3842592&req=5

Figure 8: Pre and post-training perceptual and cognitive scores for participants with both normal hearing and hearing loss (group × session interactions). The auditory training group improved in speech-in-noise perception (A), memory (B), and attention (C), whereas there were no changes in the active control group. *p < 0.05, **p < 0.01. Error bars: ± 1 SE.
Mentions: Finally, for attention, there was a significant training group × test session interaction [F(1, 50) = 3.765, p = 0.043], with improvements in the auditory training group [F(1, 25) = 17.941, p < 0.001] but not the active control group [F(1, 24) = 0.623, p = 0.438]. In this case, there were significant improvements for both the subgroups with normal hearing [F(1, 11) = 8.182, p = 0.016] and with hearing loss of the auditory training group [F(1, 12) = 9.339, p = 0.009]. Again, there were no changes for members of either hearing subgroup of the active control group (all p's > 0.1). See Figure 8 for interaction plots of behavioral changes. Please refer to Table 2 for means and standard deviations of pre- and post-training changes in behavioral measures for the normal hearing and hearing impaired participants of the auditory training and active control, groups.

Bottom Line: Aging results in a loss of sensory function, and the effects of hearing impairment can be especially devastating due to reduced communication ability.Importantly, changes in speech processing were accompanied by improvements in speech perception.Thus, central processing deficits associated with hearing loss may be partially remediated with training, resulting in real-life benefits for everyday communication.

View Article: PubMed Central - PubMed

Affiliation: Auditory Neuroscience Laboratory, Department of Communication Sciences and Disorders, Northwestern University Evanston, IL, USA ; Department of Communication Sciences, Northwestern University Evanston, IL, USA.

ABSTRACT
Aging results in a loss of sensory function, and the effects of hearing impairment can be especially devastating due to reduced communication ability. Older adults with hearing loss report that speech, especially in noisy backgrounds, is uncomfortably loud yet unclear. Hearing loss results in an unbalanced neural representation of speech: the slowly-varying envelope is enhanced, dominating representation in the auditory pathway and perceptual salience at the cost of the rapidly-varying fine structure. We hypothesized that older adults with hearing loss can be trained to compensate for these changes in central auditory processing through directed attention to behaviorally-relevant speech sounds. To that end, we evaluated the effects of auditory-cognitive training in older adults (ages 55-79) with normal hearing and hearing loss. After training, the auditory training group with hearing loss experienced a reduction in the neural representation of the speech envelope presented in noise, approaching levels observed in normal hearing older adults. No changes were noted in the control group. Importantly, changes in speech processing were accompanied by improvements in speech perception. Thus, central processing deficits associated with hearing loss may be partially remediated with training, resulting in real-life benefits for everyday communication.

No MeSH data available.


Related in: MedlinePlus