Limits...
Age related changes in striatal resting state functional connectivity in autism.

Padmanabhan A, Lynn A, Foran W, Luna B, O'Hearn K - Front Hum Neurosci (2013)

Bottom Line: Overall, we found that both groups show decreases in cortico-striatal circuits over age.In addition, ASD participants showed aberrant age-related connectivity with anterior aspects of cerebellum, and posterior temporal regions (e.g., fusiform gyrus, inferior and superior temporal gyri).In sum, we found prominent differences in the development of striatal connectivity in ASD, most notably, atypical development of connectivity in striatal networks that may underlie cognitive and social reward processing.

View Article: PubMed Central - PubMed

Affiliation: Laboratory of Neurocognitive Development, Department of Psychiatry, University of Pittsburgh Pittsburgh, PA, USA.

ABSTRACT
Characterizing the nature of developmental change is critical to understanding the mechanisms that are impaired in complex neurodevelopment disorders such as autism spectrum disorder (ASD) and, pragmatically, may allow us to pinpoint periods of plasticity when interventions are particularly useful. Although aberrant brain development has long been theorized as a characteristic feature of ASD, the neural substrates have been difficult to characterize, in part due to a lack of developmental data and to performance confounds. To address these issues, we examined the development of intrinsic functional connectivity, with resting state fMRI from late childhood to early adulthood (8-36 years), using a seed based functional connectivity method with the striatal regions. Overall, we found that both groups show decreases in cortico-striatal circuits over age. However, when controlling for age, ASD participants showed increased connectivity with parietal cortex and decreased connectivity with prefrontal cortex relative to typically developed (TD) participants. In addition, ASD participants showed aberrant age-related connectivity with anterior aspects of cerebellum, and posterior temporal regions (e.g., fusiform gyrus, inferior and superior temporal gyri). In sum, we found prominent differences in the development of striatal connectivity in ASD, most notably, atypical development of connectivity in striatal networks that may underlie cognitive and social reward processing. Our findings highlight the need to identify the biological mechanisms of perturbations in brain reorganization over development, which may also help clarify discrepant findings in the literature.

No MeSH data available.


Related in: MedlinePlus

Between diagnosis group statistical map grouped by striatal region. For all analyses, we used Monte Carlo simulation for cluster correction (voxel-wise p < 0.005, cluster-level p < 0.004 or 105 voxels) (AFNI; 3dClustSim). Slices were generated using Analysis of Functional NeuroImages (AFNI) software. Regions showing increased connectivity in ASD relative TD are depicted in red and regions showing increased connectivity in TD relative to ASD are depicted in green. See Table 3 for cluster coordinates and connections to specific seed regions. (A–E) Regions connected with the dorsal rostral putamen (drP). (F–G) Regions connected with the dorsal caudal putamen (dcP). (H–I) Regions connected with the ventral rostral putamen (vrP). (J) Regions connected with the inferior ventral striatum (VSi). L, Left Hemisphere. R, Right Hemisphere.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3842522&req=5

Figure 4: Between diagnosis group statistical map grouped by striatal region. For all analyses, we used Monte Carlo simulation for cluster correction (voxel-wise p < 0.005, cluster-level p < 0.004 or 105 voxels) (AFNI; 3dClustSim). Slices were generated using Analysis of Functional NeuroImages (AFNI) software. Regions showing increased connectivity in ASD relative TD are depicted in red and regions showing increased connectivity in TD relative to ASD are depicted in green. See Table 3 for cluster coordinates and connections to specific seed regions. (A–E) Regions connected with the dorsal rostral putamen (drP). (F–G) Regions connected with the dorsal caudal putamen (dcP). (H–I) Regions connected with the ventral rostral putamen (vrP). (J) Regions connected with the inferior ventral striatum (VSi). L, Left Hemisphere. R, Right Hemisphere.

Mentions: Our results were consistent with previous work on striatal connectivity and development. Collapsed across groups and age, we found patterns of positive correlations between the striatal seeds and a distributed set of cortical areas. Overall, connectivity patterns were similar to previously published research in TD adults (Di Martino et al., 2008) (Figures S3, S4). Independent of diagnostic group, we found decreases with age in connectivity between striatal seeds and a wide set of striatal and cortical regions including prefrontal, temporal and parietal cortices, and cerebellum (Figures 2, 3). Below, for each striatal seed, we first report clusters that showed a main effect of diagnosis group when controlling for age, to establish regions that show differences in ASD relative to TD overall (Figure 4, Table 3). We then report clusters that showed significant group by age interactions (Figures 5, 6, and Figure S5, Table 4).


Age related changes in striatal resting state functional connectivity in autism.

Padmanabhan A, Lynn A, Foran W, Luna B, O'Hearn K - Front Hum Neurosci (2013)

Between diagnosis group statistical map grouped by striatal region. For all analyses, we used Monte Carlo simulation for cluster correction (voxel-wise p < 0.005, cluster-level p < 0.004 or 105 voxels) (AFNI; 3dClustSim). Slices were generated using Analysis of Functional NeuroImages (AFNI) software. Regions showing increased connectivity in ASD relative TD are depicted in red and regions showing increased connectivity in TD relative to ASD are depicted in green. See Table 3 for cluster coordinates and connections to specific seed regions. (A–E) Regions connected with the dorsal rostral putamen (drP). (F–G) Regions connected with the dorsal caudal putamen (dcP). (H–I) Regions connected with the ventral rostral putamen (vrP). (J) Regions connected with the inferior ventral striatum (VSi). L, Left Hemisphere. R, Right Hemisphere.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3842522&req=5

Figure 4: Between diagnosis group statistical map grouped by striatal region. For all analyses, we used Monte Carlo simulation for cluster correction (voxel-wise p < 0.005, cluster-level p < 0.004 or 105 voxels) (AFNI; 3dClustSim). Slices were generated using Analysis of Functional NeuroImages (AFNI) software. Regions showing increased connectivity in ASD relative TD are depicted in red and regions showing increased connectivity in TD relative to ASD are depicted in green. See Table 3 for cluster coordinates and connections to specific seed regions. (A–E) Regions connected with the dorsal rostral putamen (drP). (F–G) Regions connected with the dorsal caudal putamen (dcP). (H–I) Regions connected with the ventral rostral putamen (vrP). (J) Regions connected with the inferior ventral striatum (VSi). L, Left Hemisphere. R, Right Hemisphere.
Mentions: Our results were consistent with previous work on striatal connectivity and development. Collapsed across groups and age, we found patterns of positive correlations between the striatal seeds and a distributed set of cortical areas. Overall, connectivity patterns were similar to previously published research in TD adults (Di Martino et al., 2008) (Figures S3, S4). Independent of diagnostic group, we found decreases with age in connectivity between striatal seeds and a wide set of striatal and cortical regions including prefrontal, temporal and parietal cortices, and cerebellum (Figures 2, 3). Below, for each striatal seed, we first report clusters that showed a main effect of diagnosis group when controlling for age, to establish regions that show differences in ASD relative to TD overall (Figure 4, Table 3). We then report clusters that showed significant group by age interactions (Figures 5, 6, and Figure S5, Table 4).

Bottom Line: Overall, we found that both groups show decreases in cortico-striatal circuits over age.In addition, ASD participants showed aberrant age-related connectivity with anterior aspects of cerebellum, and posterior temporal regions (e.g., fusiform gyrus, inferior and superior temporal gyri).In sum, we found prominent differences in the development of striatal connectivity in ASD, most notably, atypical development of connectivity in striatal networks that may underlie cognitive and social reward processing.

View Article: PubMed Central - PubMed

Affiliation: Laboratory of Neurocognitive Development, Department of Psychiatry, University of Pittsburgh Pittsburgh, PA, USA.

ABSTRACT
Characterizing the nature of developmental change is critical to understanding the mechanisms that are impaired in complex neurodevelopment disorders such as autism spectrum disorder (ASD) and, pragmatically, may allow us to pinpoint periods of plasticity when interventions are particularly useful. Although aberrant brain development has long been theorized as a characteristic feature of ASD, the neural substrates have been difficult to characterize, in part due to a lack of developmental data and to performance confounds. To address these issues, we examined the development of intrinsic functional connectivity, with resting state fMRI from late childhood to early adulthood (8-36 years), using a seed based functional connectivity method with the striatal regions. Overall, we found that both groups show decreases in cortico-striatal circuits over age. However, when controlling for age, ASD participants showed increased connectivity with parietal cortex and decreased connectivity with prefrontal cortex relative to typically developed (TD) participants. In addition, ASD participants showed aberrant age-related connectivity with anterior aspects of cerebellum, and posterior temporal regions (e.g., fusiform gyrus, inferior and superior temporal gyri). In sum, we found prominent differences in the development of striatal connectivity in ASD, most notably, atypical development of connectivity in striatal networks that may underlie cognitive and social reward processing. Our findings highlight the need to identify the biological mechanisms of perturbations in brain reorganization over development, which may also help clarify discrepant findings in the literature.

No MeSH data available.


Related in: MedlinePlus